Infinity Additive Manufacturing of Polarization Maintaining Fibers for THz Communications

Guofu Xu, K. Nallappan, Yang Cao, M. Skorobogatiy
{"title":"Infinity Additive Manufacturing of Polarization Maintaining Fibers for THz Communications","authors":"Guofu Xu, K. Nallappan, Yang Cao, M. Skorobogatiy","doi":"10.1109/RWS55624.2023.10046329","DOIUrl":null,"url":null,"abstract":"A polarization-maintaining fiber was developed for communication applications within multi-channel and polarization-division multiplexing modalities. The fiber was designed for signal transmission at 128 GHz carrier frequency. It was 3D printed using a 35° inclined nozzle that enables length-unlimited fabrication of terahertz fibers featuring complex transverse geometries. More importantly, a significant reduction (~25%-40%) in fiber transmission loss was achieved after annealing the fabricated fiber at a temperature close to its melting point, resulting in the reduced fiber losses (by power) approaching ~5-10 dB and ~7-11 dB over 110–150 GHz for the two orthogonally polarized modes. The communication demonstrates show that the signal transmission with bit error rates of ~10-11-10-5 was supported at 128 GHz over 1–6 Gbps by the two orthogonal modes of the annealed fiber. The experimental characterization demonstrated the promising prospect of such a novel technique for the fabrication of advanced THz fibers for fiber-assisted communication applications.","PeriodicalId":110742,"journal":{"name":"2023 IEEE Radio and Wireless Symposium (RWS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS55624.2023.10046329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A polarization-maintaining fiber was developed for communication applications within multi-channel and polarization-division multiplexing modalities. The fiber was designed for signal transmission at 128 GHz carrier frequency. It was 3D printed using a 35° inclined nozzle that enables length-unlimited fabrication of terahertz fibers featuring complex transverse geometries. More importantly, a significant reduction (~25%-40%) in fiber transmission loss was achieved after annealing the fabricated fiber at a temperature close to its melting point, resulting in the reduced fiber losses (by power) approaching ~5-10 dB and ~7-11 dB over 110–150 GHz for the two orthogonally polarized modes. The communication demonstrates show that the signal transmission with bit error rates of ~10-11-10-5 was supported at 128 GHz over 1–6 Gbps by the two orthogonal modes of the annealed fiber. The experimental characterization demonstrated the promising prospect of such a novel technique for the fabrication of advanced THz fibers for fiber-assisted communication applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹通信保偏振光纤的无限增材制造
针对多通道和分极化复用模式下的通信应用,研制了一种保偏光纤。该光纤设计用于128ghz载波频率的信号传输。它是使用35°倾斜喷嘴进行3D打印的,可以无限制地制造具有复杂横向几何形状的太赫兹光纤。更重要的是,在接近熔点的温度下退火后,光纤传输损耗显著降低(~25% ~ 40%),在110 ~ 150 GHz范围内,两种正交极化模式的光纤损耗(按功率计算)分别降低~5 ~ 10 dB和~7 ~ 11 dB。通信实验表明,该退火光纤的两种正交模式在1-6 Gbps的速率下,可支持误码率为~10-11-10-5的128 GHz信号传输。实验表征表明,这种新技术在制造用于光纤辅助通信的高级太赫兹光纤方面具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image-Rejection Up-/Down-Converter LO Distribution Chain for 5G mm-wave Phased-Array Systems Compact Half-Mode Triple-Band Bandpass Filter by using Stepped Impedance Resonators with Grounding Via Holes Performance Analysis for Coded Wireless Steganography System with OFDM Signaling Design and Analysis of a RF Front-End Receiver System Based on Multi-Layer Organic Filtering for Sub-6 GHz Mobile Communication Applications Improving Coding Efficiency in All-digital Transmitters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1