Automation of Grievance Registration using Transfer Learning

G. Sidharth, Abijeeth Vasra, S. Sridevi, C. Deisy, M. K. A. A. Khan
{"title":"Automation of Grievance Registration using Transfer Learning","authors":"G. Sidharth, Abijeeth Vasra, S. Sridevi, C. Deisy, M. K. A. A. Khan","doi":"10.1109/ICIPTM57143.2023.10118181","DOIUrl":null,"url":null,"abstract":"Grievance redressal is an indispensable service but involves a lot of issues, which can be resolved if a proper automated application is introduced which involves grievance classification and location fetching mechanism. To arrive at the solution, machine learning techniques can be used, but another major facet of this application is that it should be compatible and transportable. Hence the solution needs to be in the form of a mobile application. The machine learning model must be incorporated into the mobile application. Since mobile phones have minimal computational power to run a model, an architecture which uses minimal resources must be used. MobileNet V2 is an architecture which is specially designed to incorporate Deep learning (DL) algorithm especially Image classification. MobileNet uses minimal computational resources, and interoperability is achieved through Google's Teachable machine learning, which provides a tft lite (TensorFlow Lite) model for our trained dataset and the model can be imported in to the project's asset. Location manager of android's architecture can be used to fetch the user's current latitude and longitude, which can be used by grievance redressal organization to navigate. On achieving this solution, a lot of tedious processes in our existing grievance management system can be automated. Both the public and the government can be benefited and as a result, a lot of data will be in hand which is of prominent importance now a days.","PeriodicalId":178817,"journal":{"name":"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)","volume":"455 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPTM57143.2023.10118181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grievance redressal is an indispensable service but involves a lot of issues, which can be resolved if a proper automated application is introduced which involves grievance classification and location fetching mechanism. To arrive at the solution, machine learning techniques can be used, but another major facet of this application is that it should be compatible and transportable. Hence the solution needs to be in the form of a mobile application. The machine learning model must be incorporated into the mobile application. Since mobile phones have minimal computational power to run a model, an architecture which uses minimal resources must be used. MobileNet V2 is an architecture which is specially designed to incorporate Deep learning (DL) algorithm especially Image classification. MobileNet uses minimal computational resources, and interoperability is achieved through Google's Teachable machine learning, which provides a tft lite (TensorFlow Lite) model for our trained dataset and the model can be imported in to the project's asset. Location manager of android's architecture can be used to fetch the user's current latitude and longitude, which can be used by grievance redressal organization to navigate. On achieving this solution, a lot of tedious processes in our existing grievance management system can be automated. Both the public and the government can be benefited and as a result, a lot of data will be in hand which is of prominent importance now a days.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用迁移学习实现投诉登记的自动化
申诉补救是一项不可或缺的服务,但涉及许多问题,如果引入适当的自动化应用程序(包括申诉分类和位置获取机制),则可以解决这些问题。为了获得解决方案,可以使用机器学习技术,但该应用程序的另一个主要方面是它应该是兼容和可移植的。因此,解决方案需要以移动应用程序的形式出现。机器学习模型必须整合到移动应用程序中。由于移动电话运行模型的计算能力最小,因此必须使用使用最少资源的架构。MobileNet V2是一个专门为融合深度学习(DL)算法尤其是图像分类而设计的架构。MobileNet使用最少的计算资源,互操作性是通过谷歌的可教机器学习实现的,它为我们的训练数据集提供了一个tft lite (TensorFlow lite)模型,该模型可以导入到项目的资产中。android架构的位置管理器可以获取用户当前的经纬度,申诉组织可以使用这些经纬度进行导航。通过实现这个解决方案,我们现有的申诉管理系统中的许多繁琐的过程可以自动化。公众和政府都可以从中受益,因此,大量的数据将掌握在手中,这在现在是非常重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Efficiency class-F−1 Amplifier with reconfigurable microstrip Differential Filter for Sub-6-GHz Massive MIMO Application Predicting Student's Satisfaction towards Hybrid Learning in Informatics IoT based Weather, Soil, Earthquake, Air pollution Monitoring System Development of a Blockchain-based Platform to Simplify the Sharing of Patient Data A Silent Cardiac Atrial Fibrillation Detection and Classification using Deep Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1