Wide bandwidth pythagorean rectifier

G. Scandurra, G. Cannatà, C. Ciofi
{"title":"Wide bandwidth pythagorean rectifier","authors":"G. Scandurra, G. Cannatà, C. Ciofi","doi":"10.1049/iet-cds.2012.0140","DOIUrl":null,"url":null,"abstract":"It has recently been proposed by a few authors that the trigonometric Pythagorean identity can be used for the implementation of precision full-wave rectifiers for sinusoidal signals with advantages with respect to diode-based rectifiers for amplitudes in the hundreds of mV range. The approaches proposed so far require a 90° phase shifter and this results in the obvious limitation that the input signal frequency must be known prior to amplitude measurement. In this study, the authors propose a new precision full-wave rectifier, capable of overcoming this limitation. Starting from the sinusoidal input, a squared co-sinusoidal signal is obtained in a wide frequency range by multiplying the output signals of an integrator and of a differentiator. The signal thus obtained is added to the input signal squared, and a square root extractor is employed for obtaining a DC signal proportional to the amplitude of the input signal. A prototype capable of operating within a two decades frequency range across 3200 Hz has been realised and tested with an accuracy better than 2% and a residual ripple of less than 0.3% for input amplitudes larger than 100 mV. A configuration capable of operating in the MHz frequency range is also proposed.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2012.0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It has recently been proposed by a few authors that the trigonometric Pythagorean identity can be used for the implementation of precision full-wave rectifiers for sinusoidal signals with advantages with respect to diode-based rectifiers for amplitudes in the hundreds of mV range. The approaches proposed so far require a 90° phase shifter and this results in the obvious limitation that the input signal frequency must be known prior to amplitude measurement. In this study, the authors propose a new precision full-wave rectifier, capable of overcoming this limitation. Starting from the sinusoidal input, a squared co-sinusoidal signal is obtained in a wide frequency range by multiplying the output signals of an integrator and of a differentiator. The signal thus obtained is added to the input signal squared, and a square root extractor is employed for obtaining a DC signal proportional to the amplitude of the input signal. A prototype capable of operating within a two decades frequency range across 3200 Hz has been realised and tested with an accuracy better than 2% and a residual ripple of less than 0.3% for input amplitudes larger than 100 mV. A configuration capable of operating in the MHz frequency range is also proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宽带宽毕达哥拉斯整流器
最近,一些作者提出,三角毕达哥拉斯恒等式可用于实现正弦信号的精确全波整流器,相对于基于二极管的整流器,其振幅在数百mV范围内。迄今为止提出的方法需要一个90°移相器,这导致了输入信号频率必须在幅度测量之前已知的明显限制。在这项研究中,作者提出了一种新的高精度全波整流器,能够克服这一限制。从正弦输入开始,通过将积分器和微分器的输出信号相乘,在宽频率范围内得到平方余正弦信号。将由此获得的信号加到输入信号的平方中,并使用平方根提取器来获得与输入信号的幅度成比例的直流信号。已经实现了一个能够在3200赫兹的二十年频率范围内工作的原型,并对其进行了测试,其精度优于2%,输入幅度大于100 mV的残余纹波小于0.3%。还提出了一种能够在MHz频率范围内工作的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low-offset low-power and high-speed dynamic latch comparator with a preamplifier-enhanced stage Embedding delay-based physical unclonable functions in networks-on-chip Design of 10T SRAM cell with improved read performance and expanded write margin On the applicability of two-bit carbon nanotube through-silicon via for power distribution networks in 3-D integrated circuits Analytical model and simulation-based analysis of a work function engineered triple metal tunnel field-effect transistor device showing excellent device performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1