Optimizing Additive Approximations of Non-additive Distortion Functions

Solène Bernard, P. Bas, T. Pevný, John Klein
{"title":"Optimizing Additive Approximations of Non-additive Distortion Functions","authors":"Solène Bernard, P. Bas, T. Pevný, John Klein","doi":"10.1145/3437880.3460407","DOIUrl":null,"url":null,"abstract":"The progress in steganography is hampered by a gap between non-additive distortion functions, which capture well complex dependencies in natural images, and their additive counterparts, which are efficient for data embedding. This paper proposes a theoretically justified method to approximate the former by the latter. The proposed method, called Backpack (for BACKPropagable AttaCK), combines new results in the approximation of gradients of discrete distributions with a gradient of implicit functions in order to derive a gradient w.r.t. the distortion of each JPEG coefficient. Backpack combined with the min max iterative protocol leads to a very secure steganographic algorithm. For example, the error rate of XuNet on 512 X 512 JPEG images, compressed with quality factor 100 and a payload of 0.4 bits per non-zero AC coefficient is 37.3% with Backpack, compared to a 26.5% error rate using ADV-EMB with minmax (considered state of the art in this work) and a 16.9% error rate with J-UNIWARD.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The progress in steganography is hampered by a gap between non-additive distortion functions, which capture well complex dependencies in natural images, and their additive counterparts, which are efficient for data embedding. This paper proposes a theoretically justified method to approximate the former by the latter. The proposed method, called Backpack (for BACKPropagable AttaCK), combines new results in the approximation of gradients of discrete distributions with a gradient of implicit functions in order to derive a gradient w.r.t. the distortion of each JPEG coefficient. Backpack combined with the min max iterative protocol leads to a very secure steganographic algorithm. For example, the error rate of XuNet on 512 X 512 JPEG images, compressed with quality factor 100 and a payload of 0.4 bits per non-zero AC coefficient is 37.3% with Backpack, compared to a 26.5% error rate using ADV-EMB with minmax (considered state of the art in this work) and a 16.9% error rate with J-UNIWARD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非加性失真函数的加性逼近优化
非加性失真函数可以很好地捕获自然图像中复杂的依赖关系,而加性失真函数可以有效地嵌入数据,这两者之间的差距阻碍了隐写术的发展。本文提出了一种理论上合理的用后者逼近前者的方法。所提出的方法称为Backpack(反向传播攻击),它将离散分布梯度近似的新结果与隐函数梯度相结合,以便推导出每个JPEG系数失真的梯度。背包结合最小最大迭代协议导致一个非常安全的隐写算法。例如,XuNet对512 X 512 JPEG图像进行压缩,质量系数为100,每个非零交流系数的有效载荷为0.4位,使用Backpack的错误率为37.3%,而使用minmax的adva - emb的错误率为26.5%(在本工作中被认为是最先进的),使用J-UNIWARD的错误率为16.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Requirements on Synthetic Fingerprint Images for Biometric Authentication and Forensic Investigations Information Hiding in Cyber Physical Systems: Challenges for Embedding, Retrieval and Detection using Sensor Data of the SWAT Dataset On the Robustness of Backdoor-based Watermarking in Deep Neural Networks Banners: Binarized Neural Networks with Replicated Secret Sharing Meta and Media Data Stream Forensics in the Encrypted Domain of Video Conferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1