Syllable-to-Syllable and Word-to-Word Transducers for Burmese Dialect Translation

Thazin Myint Oo, T. Tanprasert, Ye Kyaw Thu, T. Supnithi
{"title":"Syllable-to-Syllable and Word-to-Word Transducers for Burmese Dialect Translation","authors":"Thazin Myint Oo, T. Tanprasert, Ye Kyaw Thu, T. Supnithi","doi":"10.1109/iSAI-NLP56921.2022.9960259","DOIUrl":null,"url":null,"abstract":"Weighted Finite State Transducers (WFST) can be very efficient to implement Burmese dialects translation. We illustrate this on two Burmese dialect language pairs, Burmese-Beik and Burmese-Rakhine. In this study, we examine syllable and word segmentation schemes and their effect on alignment and transducing between dialect language pairs. We performed alignments with Anymalign, fastalign, pialign, Hieralign, eflomal and GIZA ++ approaches and implemented WFST based machine translation system with OpenFst library. From the overall results, syllable segmentation achieved higher BLEU and chrF scores for Burmese-Rakhine and Rakhine-Burmese translations. However, word segmentation achieved better translation performance for Burmese-Beik and Beik-Burmese translation directions. Alignment techniques fast align, Hieralign, eflomal and GIZA ++ are working well for low-resource Burmese dialects.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weighted Finite State Transducers (WFST) can be very efficient to implement Burmese dialects translation. We illustrate this on two Burmese dialect language pairs, Burmese-Beik and Burmese-Rakhine. In this study, we examine syllable and word segmentation schemes and their effect on alignment and transducing between dialect language pairs. We performed alignments with Anymalign, fastalign, pialign, Hieralign, eflomal and GIZA ++ approaches and implemented WFST based machine translation system with OpenFst library. From the overall results, syllable segmentation achieved higher BLEU and chrF scores for Burmese-Rakhine and Rakhine-Burmese translations. However, word segmentation achieved better translation performance for Burmese-Beik and Beik-Burmese translation directions. Alignment techniques fast align, Hieralign, eflomal and GIZA ++ are working well for low-resource Burmese dialects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缅甸方言翻译的音节到音节和词到词转换器
加权有限状态传感器(WFST)可以非常有效地实现缅甸方言的翻译。我们用缅甸方言对缅北语和缅甸若开语来说明这一点。在本研究中,我们考察了音节和分词方案及其对方言语言对对齐和转导的影响。我们使用Anymalign, fastalign, pialign, Hieralign, eflomal和giz++方法进行对齐,并使用OpenFst库实现了基于WFST的机器翻译系统。从整体结果来看,缅甸-若开邦和若开邦-缅甸语翻译的音节分词获得了更高的BLEU和chrF分数。而分词在缅北和北缅两种翻译方向上的翻译效果更好。对齐技术fast align, Hieralign, eflomal和giz++对于资源匮乏的缅甸方言都很有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Interviewer's Presentation Styles for Interview Practice with a Communicative Robot An Analysis of Acoustic Features for Attention Score in Thai MoCA Assessment Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models Using the MQTT Broker as a Speech-Activated Medium to Control the Operation of Devices in the Smart Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1