Community and important actors analysis with different keywords in social network

Nanang Cahyana, R. Munir
{"title":"Community and important actors analysis with different keywords in social network","authors":"Nanang Cahyana, R. Munir","doi":"10.1109/ICSITECH.2017.8257163","DOIUrl":null,"url":null,"abstract":"Twitter has hundreds of millions of users around the world. Using the Twitter as a social network analysis material is very much in demand. Social network analysis can analyze groups and actors of a social network so that it can detect early behaviors that will be performed by groups and actors. But social network analysis in general has not shown strong groups and actors because it uses only one keyword. As a result, this method is quite difficult in detecting early events of a group and actors, especially those associated with cyberterrorist. For that, it needs a method of social network analysis so that the group and the actors produced are really strong and can be detected early behavior that will be done group and actors. The method in question is the use of several different keywords but have the same topic. With this method, it can be obtained a network pattern of groups and powerful actors related to the desired topic so that it can detect earlier behavior that will be done groups and actors. The results obtained are different keywords but have a high value of similarity topics can produce groups and actors are getting stronger. It can increase in the value of graph metric. So this method is feasible to search relationships between different keywords to find the powerfull community and important actor in social network.","PeriodicalId":165045,"journal":{"name":"2017 3rd International Conference on Science in Information Technology (ICSITech)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITECH.2017.8257163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Twitter has hundreds of millions of users around the world. Using the Twitter as a social network analysis material is very much in demand. Social network analysis can analyze groups and actors of a social network so that it can detect early behaviors that will be performed by groups and actors. But social network analysis in general has not shown strong groups and actors because it uses only one keyword. As a result, this method is quite difficult in detecting early events of a group and actors, especially those associated with cyberterrorist. For that, it needs a method of social network analysis so that the group and the actors produced are really strong and can be detected early behavior that will be done group and actors. The method in question is the use of several different keywords but have the same topic. With this method, it can be obtained a network pattern of groups and powerful actors related to the desired topic so that it can detect earlier behavior that will be done groups and actors. The results obtained are different keywords but have a high value of similarity topics can produce groups and actors are getting stronger. It can increase in the value of graph metric. So this method is feasible to search relationships between different keywords to find the powerfull community and important actor in social network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不同关键词的社群与重要行动者分析
推特在全球拥有数亿用户。使用Twitter作为社会网络分析材料的需求非常大。社会网络分析可以分析社会网络中的群体和行动者,从而发现群体和行动者将会做出的早期行为。但一般来说,社交网络分析并没有显示出强大的群体和参与者,因为它只使用了一个关键词。因此,这种方法很难发现一个群体和行动者的早期事件,特别是与网络恐怖分子有关的事件。为此,它需要一种社会网络分析的方法,这样产生的群体和参与者是非常强大的,并且可以早期发现群体和参与者将要做的行为。问题的方法是使用几个不同的关键字,但有相同的主题。通过这种方法,可以获得与期望主题相关的群体和强大参与者的网络模式,从而可以检测到将要做的群体和参与者的早期行为。得到的结果是不同的关键词,但具有较高的相似度值的主题可以产生组和演员越来越强。它可以增加图形度量的值。因此,该方法可以通过搜索不同关键词之间的关系来寻找社会网络中强大的社区和重要的行动者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blended learning in postgraduate program Predicting degree-completion time with data mining Real-time location recommendation system for field data collection Segmentation of retinal blood vessels using Gabor wavelet and morphological reconstruction The development and usability testing of game-based learning as a medium to introduce zoology to young learners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1