A. V. Pret, M. Kocsis, D. De Simone, G. Vandenberghe, J. Stowers, A. Giglia, P. de Schepper, A. Mani, J. Biafore
{"title":"Characterizing and modeling electrical response to light for metal-based EUV photoresists","authors":"A. V. Pret, M. Kocsis, D. De Simone, G. Vandenberghe, J. Stowers, A. Giglia, P. de Schepper, A. Mani, J. Biafore","doi":"10.1117/12.2219736","DOIUrl":null,"url":null,"abstract":"Metal-based photoresists are appealing for use in EUV lithography due to their improved etch resistance and absorption compared with organic resists, and due to their resolving power demonstrated with 13.53 nm exposures using synchrotron light. Recently imec has started a new project to study novel photoresists for EUV lithography, with particular attention to metal containing materials, in order to explore alternative approaches that may offer superior characteristics in photoresist imaging and etching performance compared with more mature chemically amplified resists. In order to model these novel resists it is mandatory to understand both the optical properties and the electronic response to photon absorption. As in previous experiments on organic materials, some of the optical properties can be determined by merging analysis from high-energy electron scattering models (e.g. CXRO website), X-ray absorption spectroscopy, and DUV spectroscopic ellipsometry. Dispersion curves can be used to calculate the electronic inelastic and elastic mean-free paths; convolved with the expected spectrum at wafer level it is possible to estimate the electron yield and the secondary electron blur of the photoresist. These material properties can be used to modify the physical models currently used to simulate organic photoresist performance in computational lithography software.","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2219736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Metal-based photoresists are appealing for use in EUV lithography due to their improved etch resistance and absorption compared with organic resists, and due to their resolving power demonstrated with 13.53 nm exposures using synchrotron light. Recently imec has started a new project to study novel photoresists for EUV lithography, with particular attention to metal containing materials, in order to explore alternative approaches that may offer superior characteristics in photoresist imaging and etching performance compared with more mature chemically amplified resists. In order to model these novel resists it is mandatory to understand both the optical properties and the electronic response to photon absorption. As in previous experiments on organic materials, some of the optical properties can be determined by merging analysis from high-energy electron scattering models (e.g. CXRO website), X-ray absorption spectroscopy, and DUV spectroscopic ellipsometry. Dispersion curves can be used to calculate the electronic inelastic and elastic mean-free paths; convolved with the expected spectrum at wafer level it is possible to estimate the electron yield and the secondary electron blur of the photoresist. These material properties can be used to modify the physical models currently used to simulate organic photoresist performance in computational lithography software.