AI helps reduce transformer iron losses

P. Georgilakis, N. Hatziargyriou, D. Paparigas
{"title":"AI helps reduce transformer iron losses","authors":"P. Georgilakis, N. Hatziargyriou, D. Paparigas","doi":"10.1109/67.795137","DOIUrl":null,"url":null,"abstract":"Methods for iron loss reduction during manufacturing of wound-core distribution transformers are presented. More specifically, measurements taken at the first stages of core construction are effectively used, in order to minimize iron losses of transformer (final product). To optimally exploit the measurements (feedback), artificial intelligence methods are applied. It is shown that intelligent systems are able to learn and interpret several variations of the same conditions, thus helping in predicting iron losses with increased accuracy.","PeriodicalId":435675,"journal":{"name":"IEEE Computer Applications in Power","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Applications in Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/67.795137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Methods for iron loss reduction during manufacturing of wound-core distribution transformers are presented. More specifically, measurements taken at the first stages of core construction are effectively used, in order to minimize iron losses of transformer (final product). To optimally exploit the measurements (feedback), artificial intelligence methods are applied. It is shown that intelligent systems are able to learn and interpret several variations of the same conditions, thus helping in predicting iron losses with increased accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能有助于减少变压器铁的损耗
介绍了绕组铁芯配电变压器制造过程中降低铁损的方法。更具体地说,在铁芯建设的第一阶段采取的测量有效地使用,以尽量减少变压器的铁损耗(最终产品)。为了最佳地利用测量(反馈),应用了人工智能方法。研究表明,智能系统能够学习和解释相同条件下的几种变化,从而有助于提高预测铁损失的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal linear control in stabilizer design Simulation and transient testing of numerical relays Deriving model parameters from field test measurements Prospective on computer applications in power Power electronics spark new simulation challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1