Nonlinear model predictive control of a hydraulic excavator using Hammerstein models

F. A. Bender, M. Sonntag, O. Sawodny
{"title":"Nonlinear model predictive control of a hydraulic excavator using Hammerstein models","authors":"F. A. Bender, M. Sonntag, O. Sawodny","doi":"10.1109/ICARA.2015.7081208","DOIUrl":null,"url":null,"abstract":"Hydraulic excavators play a crucial role on worldwide construction sites. Efficient operation of these machines therefore contributes to a quick completion of the construction task. In particular, optimized control strategies can lead to improvements with regard to machine performance, fuel consumption, and pollutant emissions. In this work, a nonlinear model of a hydraulic excavator is considered. It is shown that a simplified nonlinear model with Hammerstein structure can accurately represent the underlying dynamics for the purpose of control. Based on this model, a nonlinear model predictive control approach including an optimization algorithm is developed in order to have the excavator perform a task given through target positions of the four motion axes. Simulation results based on an application of the developed controller to a complex physical model of the excavator indicate good tracking performance and fast execution of the task.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Hydraulic excavators play a crucial role on worldwide construction sites. Efficient operation of these machines therefore contributes to a quick completion of the construction task. In particular, optimized control strategies can lead to improvements with regard to machine performance, fuel consumption, and pollutant emissions. In this work, a nonlinear model of a hydraulic excavator is considered. It is shown that a simplified nonlinear model with Hammerstein structure can accurately represent the underlying dynamics for the purpose of control. Based on this model, a nonlinear model predictive control approach including an optimization algorithm is developed in order to have the excavator perform a task given through target positions of the four motion axes. Simulation results based on an application of the developed controller to a complex physical model of the excavator indicate good tracking performance and fast execution of the task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hammerstein模型的液压挖掘机非线性模型预测控制
液压挖掘机在世界各地的建筑工地发挥着至关重要的作用。因此,这些机器的高效操作有助于快速完成施工任务。特别是,优化的控制策略可以导致机器性能,燃料消耗和污染物排放方面的改进。本文考虑了液压挖掘机的非线性模型。结果表明,采用Hammerstein结构的简化非线性模型可以准确地表示潜在的动力学特性,从而达到控制的目的。在此基础上,提出了一种包含优化算法的非线性模型预测控制方法,以使挖掘机执行通过四个运动轴的目标位置给定的任务。将所开发的控制器应用于挖掘机复杂物理模型的仿真结果表明,该控制器具有良好的跟踪性能和快速的任务执行速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated weighing by sequential inference in dynamic environments Implementing a HARMS-based software system for use in collective robotics applications Concepts and simulations of a soft robot mimicking human tongue Application of Inverse Simulation to a wheeled mobile robot Design and experimental testing of vehicle-following control for small electric vehicles with communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1