A numerical and experimental investigation of three-dimensional ground heat transfer

S. Rees, H. R. Thomas, Z. Zhou
{"title":"A numerical and experimental investigation of three-dimensional ground heat transfer","authors":"S. Rees, H. R. Thomas, Z. Zhou","doi":"10.1191/0143624406bse161oa","DOIUrl":null,"url":null,"abstract":"A three-dimensional numerical simulation of transient heat transfer behaviour measured during a full-scale experiment is presented. The experimental data, provided by others, was measured at a purpose built, full-scale test-house, over a 5-year period. The paper addresses some of the practical problems associated with undertaking multi-dimensional simulations, even when the problem is reasonably well defined. Comparisons are made between numerical results and measured data over an annual cycle. Good correlation of results has been achieved. Phase lag of ground temperature variations was also accurately represented in the simulation. The need to pre-condition the simulation to arrive at realistic initial conditions is shown to be necessary in this class of problem. Practical application: At the design stage a predictive assessment of building energy consumption and dissipation is clearly of value. However, the accuracy of any simulation fundamentally depends on the precision with which relevant factors are included. Above-ground insulation of buildings has steadily improved and as a consequence thermal losses due to earth-contact have become proportionally more important. Within this context, this paper aims to provide a case study for validation of models against full-scale field-measured data. The work will also contribute to innovative design that may utilize the thermal mass of foundation materials to achieve the required thermal performance.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/0143624406bse161oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A three-dimensional numerical simulation of transient heat transfer behaviour measured during a full-scale experiment is presented. The experimental data, provided by others, was measured at a purpose built, full-scale test-house, over a 5-year period. The paper addresses some of the practical problems associated with undertaking multi-dimensional simulations, even when the problem is reasonably well defined. Comparisons are made between numerical results and measured data over an annual cycle. Good correlation of results has been achieved. Phase lag of ground temperature variations was also accurately represented in the simulation. The need to pre-condition the simulation to arrive at realistic initial conditions is shown to be necessary in this class of problem. Practical application: At the design stage a predictive assessment of building energy consumption and dissipation is clearly of value. However, the accuracy of any simulation fundamentally depends on the precision with which relevant factors are included. Above-ground insulation of buildings has steadily improved and as a consequence thermal losses due to earth-contact have become proportionally more important. Within this context, this paper aims to provide a case study for validation of models against full-scale field-measured data. The work will also contribute to innovative design that may utilize the thermal mass of foundation materials to achieve the required thermal performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维地面换热的数值与实验研究
介绍了在全尺寸实验中测量的瞬态传热行为的三维数值模拟。其他人提供的实验数据是在一个专门建造的全尺寸测试室内进行的,为期5年。本文解决了一些与进行多维模拟相关的实际问题,即使问题已经相当好地定义了。将数值结果与一年周期内的实测数据进行比较。结果具有良好的相关性。模拟还准确地反映了地温变化的相位滞后。在这类问题中,需要对模拟进行预处理以达到真实的初始条件。实际应用:在设计阶段对建筑能耗和耗散进行预测评估显然是有价值的。然而,任何模拟的准确性从根本上取决于包含相关因素的精度。建筑物的地上绝热性能稳步提高,因此与地面接触造成的热损失也相应地变得更为重要。在此背景下,本文旨在提供一个案例研究,以验证针对全尺寸现场测量数据的模型。这项工作还将有助于创新设计,利用基础材料的热质量来实现所需的热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real coded genetic algorithm in operational optimization of a district cooling system: An inceptive applicability assessment and power saving evaluation Producing domestic energy benchmarks using a large disaggregate stock model An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics Producing domestic energy benchmarks using a large disaggregate stock model An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1