Pub Date : 2024-08-09DOI: 10.1177/01436244241269242
Mubashir A Reshi, M. Mursaleen
District Cooling Systems are progressively becoming a standard feature of smart cities. This is attributed to their inherent feature of low operating cost and high energy efficiency. Given the constantly increasing energy prices worldwide and the target of the Conference of the Parties-28th Session for reducing emissions, the District Cooling System technology is quite promising in this direction. Various studies are available that have particularly focused on the design phase optimization of the systems, while in-process operational optimization is still in its miniature phase. This paper presents a model-based metaheuristic optimization approach to cooling water system towards an inceptive control strategy to explore and exploit the energy-saving potential using a Real Coded Genetic Algorithm. The Algorithm is implemented in MATLAB to search for high-performance settings in real-time scenarios. The results showed that an energy saving from 9.66% to 26.54% can be obtained across 6 cases in the study, compared to the supervisory control. District cooling technology is expected to gain more credibility as the most sustainable alternative to air conditioning in the upcoming decades due to the world’s rapidly expanding need for cooling combined with the need to reduce carbon dioxide emissions. The current research and development efforts are yielding promising results for the fifth generation of this technology. Meanwhile, the study validates the enormous potential of operational optimization with contemporary artificial intelligence tools. This paper paves the way for future research by showing how the operation of a large-scale district cooling plant can be solved for energy saving.
{"title":"Real coded genetic algorithm in operational optimization of a district cooling system: An inceptive applicability assessment and power saving evaluation","authors":"Mubashir A Reshi, M. Mursaleen","doi":"10.1177/01436244241269242","DOIUrl":"https://doi.org/10.1177/01436244241269242","url":null,"abstract":"District Cooling Systems are progressively becoming a standard feature of smart cities. This is attributed to their inherent feature of low operating cost and high energy efficiency. Given the constantly increasing energy prices worldwide and the target of the Conference of the Parties-28th Session for reducing emissions, the District Cooling System technology is quite promising in this direction. Various studies are available that have particularly focused on the design phase optimization of the systems, while in-process operational optimization is still in its miniature phase. This paper presents a model-based metaheuristic optimization approach to cooling water system towards an inceptive control strategy to explore and exploit the energy-saving potential using a Real Coded Genetic Algorithm. The Algorithm is implemented in MATLAB to search for high-performance settings in real-time scenarios. The results showed that an energy saving from 9.66% to 26.54% can be obtained across 6 cases in the study, compared to the supervisory control. District cooling technology is expected to gain more credibility as the most sustainable alternative to air conditioning in the upcoming decades due to the world’s rapidly expanding need for cooling combined with the need to reduce carbon dioxide emissions. The current research and development efforts are yielding promising results for the fifth generation of this technology. Meanwhile, the study validates the enormous potential of operational optimization with contemporary artificial intelligence tools. This paper paves the way for future research by showing how the operation of a large-scale district cooling plant can be solved for energy saving.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"21 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1177/01436244241231354
Faridah Faridah, Sentagi Sesorya Utami, Dinta Dwi Agung Wijaya, R. Yanti, Wahyu Sukestyastama Putra, Billie Adrian
Indoor air quality is the foundation of a good indoor environment. The COVID-19 pandemic further highlighted the importance of providing real-time airflow distribution information within the Building Environmental Monitoring System (BEMS) to minimize the risk of infectious airborne transmission. This paper discusses the process of developing a predictive model for indoor airflow distribution prediction with indoor and outdoor input parameters using machine learning and its implementation in healthy BEMS for a classroom in the tropical climate region of Yogyakarta, Indonesia. This paper encompassed field measurement and simulation involving outdoor climate conditions and the operational status of the classroom’s windows, Air Conditioning units, and fans. Three machine learning models were constructed using OLS, LASSO, and Ridge methods. Datasets for the modeling were generated from CFD model simulations in IES VE and were assessed for correlation. The mean temperature and velocity differences between the CFD model simulation and measurement results are 0.21°C and 0.083 m/s, respectively. Outdoor climate conditions and the operational status of the classroom’s utilities significantly influence the indoor airflow distribution characteristics. The three models indicate a relatively poor performance, where the classroom had a relatively low sensitivity to input changes. However, the best model performance was achieved using the LASSO method, with average values from post-normalization of [Formula: see text] and Root Mean Square Error (RMSE) of 0.336 and 0.077, respectively. The model was implemented in healthy BEMS on the “Platform for Healthy and Energy Efficient Building Management System.” Practical Application: This research proposed a machine learning model of indoor airflow characteristics of a classroom in Yogyakarta. The proposed model can be adapted to produce monitoring systems that best represent the related conditions. The method can be adopted to develop a relatively simple, low-cost sensor or model to monitor an indoor environment. Future studies may explore the results of the real-world implementation in a case study.
{"title":"An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics","authors":"Faridah Faridah, Sentagi Sesorya Utami, Dinta Dwi Agung Wijaya, R. Yanti, Wahyu Sukestyastama Putra, Billie Adrian","doi":"10.1177/01436244241231354","DOIUrl":"https://doi.org/10.1177/01436244241231354","url":null,"abstract":"Indoor air quality is the foundation of a good indoor environment. The COVID-19 pandemic further highlighted the importance of providing real-time airflow distribution information within the Building Environmental Monitoring System (BEMS) to minimize the risk of infectious airborne transmission. This paper discusses the process of developing a predictive model for indoor airflow distribution prediction with indoor and outdoor input parameters using machine learning and its implementation in healthy BEMS for a classroom in the tropical climate region of Yogyakarta, Indonesia. This paper encompassed field measurement and simulation involving outdoor climate conditions and the operational status of the classroom’s windows, Air Conditioning units, and fans. Three machine learning models were constructed using OLS, LASSO, and Ridge methods. Datasets for the modeling were generated from CFD model simulations in IES VE and were assessed for correlation. The mean temperature and velocity differences between the CFD model simulation and measurement results are 0.21°C and 0.083 m/s, respectively. Outdoor climate conditions and the operational status of the classroom’s utilities significantly influence the indoor airflow distribution characteristics. The three models indicate a relatively poor performance, where the classroom had a relatively low sensitivity to input changes. However, the best model performance was achieved using the LASSO method, with average values from post-normalization of [Formula: see text] and Root Mean Square Error (RMSE) of 0.336 and 0.077, respectively. The model was implemented in healthy BEMS on the “Platform for Healthy and Energy Efficient Building Management System.” Practical Application: This research proposed a machine learning model of indoor airflow characteristics of a classroom in Yogyakarta. The proposed model can be adapted to produce monitoring systems that best represent the related conditions. The method can be adopted to develop a relatively simple, low-cost sensor or model to monitor an indoor environment. Future studies may explore the results of the real-world implementation in a case study.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"14 s3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139805159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1177/01436244241229907
D. Godoy-Shimizu, Rob Liddiard, S. Evans, Sung Min Hong, Dominic Humphrey, P. Ruyssevelt, D. Mumovic, Philip Steadman
Within the UK, domestic buildings account for 16% of total national emissions. Considerable improvements to the performance of the existing building stock will be necessary in the context of the UK’s commitment to emissions reductions, and for this to be achieved successfully and efficiently will require an improved understanding of the current performance of the stock. This paper presents an analysis of metered gas and electricity use from 808,559 dwellings with detailed building characteristic data in London, showing how energy use can be examined using a highly detailed, fully disaggregate building stock model. New gas and electricity benchmarks have been produced for houses (split by the level of attachment) and flats, for both gas- and electrically-heated properties. The paper shows how energy use varies with form, and how the choice of units influences the relative performance of different types. Comparing gas use across the types, for example, when calculated as kWh/m2, consumption follows building compactness, but when calculated as kWh/household, the trends follow building size. Finally, the paper examines how energy use varies with building thermal performance, using the Heat Loss Parameter (HLP), a standardised measure which accounts for thermal transfer through building envelopes as well as via air flow. Practical Application: This paper presents domestic energy consumption benchmarks based on measured not modelled data, produced from a large sample of London houses and flats. Results are shown for different dwelling types and heating fuels. Additionally, the relationship between gas use and envelope thermal performance is explored. The results will hopefully be beneficial for researchers, policy-makers and designers interested in better understanding current domestic energy use, and informing decisions about future improvements to energy efficiency within the stock. This paper also provides details for anyone interested in the production of the domestic benchmarks for the CIBSE benchmarking tool.
{"title":"Producing domestic energy benchmarks using a large disaggregate stock model","authors":"D. Godoy-Shimizu, Rob Liddiard, S. Evans, Sung Min Hong, Dominic Humphrey, P. Ruyssevelt, D. Mumovic, Philip Steadman","doi":"10.1177/01436244241229907","DOIUrl":"https://doi.org/10.1177/01436244241229907","url":null,"abstract":"Within the UK, domestic buildings account for 16% of total national emissions. Considerable improvements to the performance of the existing building stock will be necessary in the context of the UK’s commitment to emissions reductions, and for this to be achieved successfully and efficiently will require an improved understanding of the current performance of the stock. This paper presents an analysis of metered gas and electricity use from 808,559 dwellings with detailed building characteristic data in London, showing how energy use can be examined using a highly detailed, fully disaggregate building stock model. New gas and electricity benchmarks have been produced for houses (split by the level of attachment) and flats, for both gas- and electrically-heated properties. The paper shows how energy use varies with form, and how the choice of units influences the relative performance of different types. Comparing gas use across the types, for example, when calculated as kWh/m2, consumption follows building compactness, but when calculated as kWh/household, the trends follow building size. Finally, the paper examines how energy use varies with building thermal performance, using the Heat Loss Parameter (HLP), a standardised measure which accounts for thermal transfer through building envelopes as well as via air flow. Practical Application: This paper presents domestic energy consumption benchmarks based on measured not modelled data, produced from a large sample of London houses and flats. Results are shown for different dwelling types and heating fuels. Additionally, the relationship between gas use and envelope thermal performance is explored. The results will hopefully be beneficial for researchers, policy-makers and designers interested in better understanding current domestic energy use, and informing decisions about future improvements to energy efficiency within the stock. This paper also provides details for anyone interested in the production of the domestic benchmarks for the CIBSE benchmarking tool.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139804650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1177/01436244241231354
Faridah Faridah, Sentagi Sesorya Utami, Dinta Dwi Agung Wijaya, R. Yanti, Wahyu Sukestyastama Putra, Billie Adrian
Indoor air quality is the foundation of a good indoor environment. The COVID-19 pandemic further highlighted the importance of providing real-time airflow distribution information within the Building Environmental Monitoring System (BEMS) to minimize the risk of infectious airborne transmission. This paper discusses the process of developing a predictive model for indoor airflow distribution prediction with indoor and outdoor input parameters using machine learning and its implementation in healthy BEMS for a classroom in the tropical climate region of Yogyakarta, Indonesia. This paper encompassed field measurement and simulation involving outdoor climate conditions and the operational status of the classroom’s windows, Air Conditioning units, and fans. Three machine learning models were constructed using OLS, LASSO, and Ridge methods. Datasets for the modeling were generated from CFD model simulations in IES VE and were assessed for correlation. The mean temperature and velocity differences between the CFD model simulation and measurement results are 0.21°C and 0.083 m/s, respectively. Outdoor climate conditions and the operational status of the classroom’s utilities significantly influence the indoor airflow distribution characteristics. The three models indicate a relatively poor performance, where the classroom had a relatively low sensitivity to input changes. However, the best model performance was achieved using the LASSO method, with average values from post-normalization of [Formula: see text] and Root Mean Square Error (RMSE) of 0.336 and 0.077, respectively. The model was implemented in healthy BEMS on the “Platform for Healthy and Energy Efficient Building Management System.” Practical Application: This research proposed a machine learning model of indoor airflow characteristics of a classroom in Yogyakarta. The proposed model can be adapted to produce monitoring systems that best represent the related conditions. The method can be adopted to develop a relatively simple, low-cost sensor or model to monitor an indoor environment. Future studies may explore the results of the real-world implementation in a case study.
{"title":"An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics","authors":"Faridah Faridah, Sentagi Sesorya Utami, Dinta Dwi Agung Wijaya, R. Yanti, Wahyu Sukestyastama Putra, Billie Adrian","doi":"10.1177/01436244241231354","DOIUrl":"https://doi.org/10.1177/01436244241231354","url":null,"abstract":"Indoor air quality is the foundation of a good indoor environment. The COVID-19 pandemic further highlighted the importance of providing real-time airflow distribution information within the Building Environmental Monitoring System (BEMS) to minimize the risk of infectious airborne transmission. This paper discusses the process of developing a predictive model for indoor airflow distribution prediction with indoor and outdoor input parameters using machine learning and its implementation in healthy BEMS for a classroom in the tropical climate region of Yogyakarta, Indonesia. This paper encompassed field measurement and simulation involving outdoor climate conditions and the operational status of the classroom’s windows, Air Conditioning units, and fans. Three machine learning models were constructed using OLS, LASSO, and Ridge methods. Datasets for the modeling were generated from CFD model simulations in IES VE and were assessed for correlation. The mean temperature and velocity differences between the CFD model simulation and measurement results are 0.21°C and 0.083 m/s, respectively. Outdoor climate conditions and the operational status of the classroom’s utilities significantly influence the indoor airflow distribution characteristics. The three models indicate a relatively poor performance, where the classroom had a relatively low sensitivity to input changes. However, the best model performance was achieved using the LASSO method, with average values from post-normalization of [Formula: see text] and Root Mean Square Error (RMSE) of 0.336 and 0.077, respectively. The model was implemented in healthy BEMS on the “Platform for Healthy and Energy Efficient Building Management System.” Practical Application: This research proposed a machine learning model of indoor airflow characteristics of a classroom in Yogyakarta. The proposed model can be adapted to produce monitoring systems that best represent the related conditions. The method can be adopted to develop a relatively simple, low-cost sensor or model to monitor an indoor environment. Future studies may explore the results of the real-world implementation in a case study.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139865202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1177/01436244241229907
D. Godoy-Shimizu, Rob Liddiard, S. Evans, Sung Min Hong, Dominic Humphrey, P. Ruyssevelt, D. Mumovic, Philip Steadman
Within the UK, domestic buildings account for 16% of total national emissions. Considerable improvements to the performance of the existing building stock will be necessary in the context of the UK’s commitment to emissions reductions, and for this to be achieved successfully and efficiently will require an improved understanding of the current performance of the stock. This paper presents an analysis of metered gas and electricity use from 808,559 dwellings with detailed building characteristic data in London, showing how energy use can be examined using a highly detailed, fully disaggregate building stock model. New gas and electricity benchmarks have been produced for houses (split by the level of attachment) and flats, for both gas- and electrically-heated properties. The paper shows how energy use varies with form, and how the choice of units influences the relative performance of different types. Comparing gas use across the types, for example, when calculated as kWh/m2, consumption follows building compactness, but when calculated as kWh/household, the trends follow building size. Finally, the paper examines how energy use varies with building thermal performance, using the Heat Loss Parameter (HLP), a standardised measure which accounts for thermal transfer through building envelopes as well as via air flow. Practical Application: This paper presents domestic energy consumption benchmarks based on measured not modelled data, produced from a large sample of London houses and flats. Results are shown for different dwelling types and heating fuels. Additionally, the relationship between gas use and envelope thermal performance is explored. The results will hopefully be beneficial for researchers, policy-makers and designers interested in better understanding current domestic energy use, and informing decisions about future improvements to energy efficiency within the stock. This paper also provides details for anyone interested in the production of the domestic benchmarks for the CIBSE benchmarking tool.
{"title":"Producing domestic energy benchmarks using a large disaggregate stock model","authors":"D. Godoy-Shimizu, Rob Liddiard, S. Evans, Sung Min Hong, Dominic Humphrey, P. Ruyssevelt, D. Mumovic, Philip Steadman","doi":"10.1177/01436244241229907","DOIUrl":"https://doi.org/10.1177/01436244241229907","url":null,"abstract":"Within the UK, domestic buildings account for 16% of total national emissions. Considerable improvements to the performance of the existing building stock will be necessary in the context of the UK’s commitment to emissions reductions, and for this to be achieved successfully and efficiently will require an improved understanding of the current performance of the stock. This paper presents an analysis of metered gas and electricity use from 808,559 dwellings with detailed building characteristic data in London, showing how energy use can be examined using a highly detailed, fully disaggregate building stock model. New gas and electricity benchmarks have been produced for houses (split by the level of attachment) and flats, for both gas- and electrically-heated properties. The paper shows how energy use varies with form, and how the choice of units influences the relative performance of different types. Comparing gas use across the types, for example, when calculated as kWh/m2, consumption follows building compactness, but when calculated as kWh/household, the trends follow building size. Finally, the paper examines how energy use varies with building thermal performance, using the Heat Loss Parameter (HLP), a standardised measure which accounts for thermal transfer through building envelopes as well as via air flow. Practical Application: This paper presents domestic energy consumption benchmarks based on measured not modelled data, produced from a large sample of London houses and flats. Results are shown for different dwelling types and heating fuels. Additionally, the relationship between gas use and envelope thermal performance is explored. The results will hopefully be beneficial for researchers, policy-makers and designers interested in better understanding current domestic energy use, and informing decisions about future improvements to energy efficiency within the stock. This paper also provides details for anyone interested in the production of the domestic benchmarks for the CIBSE benchmarking tool.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139864879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02DOI: 10.1177/01436244241231356
Dorota Brzezińska, Maria Brzezińska
Large occupied spaces such as the atria can have additional internal elements like balconies, stairs, or decorations. Unfortunately, detailed design rules for smoke management systems are lacking in these large contemporary spaces. A series of smoke tests and CFD simulations were conducted to address this shortfall. The project’s first step was realised with full-scale hot smoke tests in Smoke Laboratory, which allowed the observation of a significant influence of the suspended balconies on smoke mass production. CFD simulations confirmed the preliminary observations and were used to evaluate this phenomenon quantitatively. This proved that the wider the balcony, the greater the mass increase. The same fire scenarios were examined with theoretical NFPA 92 correlations dedicated to axisymmetric and balcony spill plumes. They showed that using the standard axisymmetric plume correlation in a complex atrium could lead to a strong underprediction of the required smoke control system parameters. A proposed adapted balcony spill plume correlation can improve the smoke mase calculations. This study demonstrates that existing standards like NFPA 92 NFPA 204, or BS 7346-4. Do not cover the need for smoke control systems in complex and irregular atria solutions, which often appear in modern buildings. It has been proven that the obstructions in the atrium space significantly influence the smoke mass production. As a consequence, using the original axisymmetric plume correlation in a complex atrium could lead to a strong underprediction of smoke control system requirements. The authors proposed a new correlation for the approach to smoke control systems parameters approach at the design process.
{"title":"A new approach to smoke control systems in complex atria","authors":"Dorota Brzezińska, Maria Brzezińska","doi":"10.1177/01436244241231356","DOIUrl":"https://doi.org/10.1177/01436244241231356","url":null,"abstract":"Large occupied spaces such as the atria can have additional internal elements like balconies, stairs, or decorations. Unfortunately, detailed design rules for smoke management systems are lacking in these large contemporary spaces. A series of smoke tests and CFD simulations were conducted to address this shortfall. The project’s first step was realised with full-scale hot smoke tests in Smoke Laboratory, which allowed the observation of a significant influence of the suspended balconies on smoke mass production. CFD simulations confirmed the preliminary observations and were used to evaluate this phenomenon quantitatively. This proved that the wider the balcony, the greater the mass increase. The same fire scenarios were examined with theoretical NFPA 92 correlations dedicated to axisymmetric and balcony spill plumes. They showed that using the standard axisymmetric plume correlation in a complex atrium could lead to a strong underprediction of the required smoke control system parameters. A proposed adapted balcony spill plume correlation can improve the smoke mase calculations. This study demonstrates that existing standards like NFPA 92 NFPA 204, or BS 7346-4. Do not cover the need for smoke control systems in complex and irregular atria solutions, which often appear in modern buildings. It has been proven that the obstructions in the atrium space significantly influence the smoke mass production. As a consequence, using the original axisymmetric plume correlation in a complex atrium could lead to a strong underprediction of smoke control system requirements. The authors proposed a new correlation for the approach to smoke control systems parameters approach at the design process.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"8 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139683502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1177/01436244241231357
K. Drozdzol, Mateusz Kowalski, Elzbieta Kokocinska–Pakiet, Robert Junga, Jiri Horak
The operation of fuel-burning heating equipment results in soot build-up in the flues. Its ignition poses a significant fire risk to the building, as the flue temperature can reach 1000°C. Wooden structural elements located near the chimney (ceilings and roof penetrations) are particularly vulnerable. To date, research has focused on the fire safety of wooden ceiling elements. This is where, due to heat radiation from the chimney, wooden elements significantly increase their temperature and become the location of fire initiation in the buildings. The task of chimney designers is to limit the temperatures of heated wooden building components near these structures. The present work analysed a ceramic and concrete chimney with air space with an innovative perlite concrete casing with a dual-function (load-bearing and thermal insulation). Computational Fluid Dynamics (CFD) analyses verified by a full-scale experiment were conducted to evaluate the fire safety of wooden building ceilings. The tests showed that a high level of safety characterised the chimney under study. The maximum temperature of the casing when testing the soot fire reached 38°C, and the wooden elements simulating the ceiling reached 28°C - this result is almost four times better than the chimney standard requirement. Furthermore, a developed CFD model exhibited high accuracy compared to the experimental results and can be used for designing this type of chimney and other research and expert work, such as that performed after fires in buildings originating from the chimney. The article describes CFD analyses and tests of an innovative chimney in a perlite-concrete casing. The described research showed the high safety of such a chimney during soot fires. The results obtained can be used to develop changes in standards to improve the safety of chimneys and design safer and more efficient ones. The author’s chimney model and CFD analysis make it possible to determine the temperatures in the chimney during a soot fire. This CFD model allows you to assess the fire safety of the chimney and the building elements located in its vicinity.
{"title":"Fire safety study of a perlite concrete chimney and wooden ceilings used in buildings based on experimental tests and CFD analysis","authors":"K. Drozdzol, Mateusz Kowalski, Elzbieta Kokocinska–Pakiet, Robert Junga, Jiri Horak","doi":"10.1177/01436244241231357","DOIUrl":"https://doi.org/10.1177/01436244241231357","url":null,"abstract":"The operation of fuel-burning heating equipment results in soot build-up in the flues. Its ignition poses a significant fire risk to the building, as the flue temperature can reach 1000°C. Wooden structural elements located near the chimney (ceilings and roof penetrations) are particularly vulnerable. To date, research has focused on the fire safety of wooden ceiling elements. This is where, due to heat radiation from the chimney, wooden elements significantly increase their temperature and become the location of fire initiation in the buildings. The task of chimney designers is to limit the temperatures of heated wooden building components near these structures. The present work analysed a ceramic and concrete chimney with air space with an innovative perlite concrete casing with a dual-function (load-bearing and thermal insulation). Computational Fluid Dynamics (CFD) analyses verified by a full-scale experiment were conducted to evaluate the fire safety of wooden building ceilings. The tests showed that a high level of safety characterised the chimney under study. The maximum temperature of the casing when testing the soot fire reached 38°C, and the wooden elements simulating the ceiling reached 28°C - this result is almost four times better than the chimney standard requirement. Furthermore, a developed CFD model exhibited high accuracy compared to the experimental results and can be used for designing this type of chimney and other research and expert work, such as that performed after fires in buildings originating from the chimney. The article describes CFD analyses and tests of an innovative chimney in a perlite-concrete casing. The described research showed the high safety of such a chimney during soot fires. The results obtained can be used to develop changes in standards to improve the safety of chimneys and design safer and more efficient ones. The author’s chimney model and CFD analysis make it possible to determine the temperatures in the chimney during a soot fire. This CFD model allows you to assess the fire safety of the chimney and the building elements located in its vicinity.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"41 35","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139830043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1177/01436244241231357
K. Drozdzol, Mateusz Kowalski, Elzbieta Kokocinska–Pakiet, Robert Junga, Jiri Horak
The operation of fuel-burning heating equipment results in soot build-up in the flues. Its ignition poses a significant fire risk to the building, as the flue temperature can reach 1000°C. Wooden structural elements located near the chimney (ceilings and roof penetrations) are particularly vulnerable. To date, research has focused on the fire safety of wooden ceiling elements. This is where, due to heat radiation from the chimney, wooden elements significantly increase their temperature and become the location of fire initiation in the buildings. The task of chimney designers is to limit the temperatures of heated wooden building components near these structures. The present work analysed a ceramic and concrete chimney with air space with an innovative perlite concrete casing with a dual-function (load-bearing and thermal insulation). Computational Fluid Dynamics (CFD) analyses verified by a full-scale experiment were conducted to evaluate the fire safety of wooden building ceilings. The tests showed that a high level of safety characterised the chimney under study. The maximum temperature of the casing when testing the soot fire reached 38°C, and the wooden elements simulating the ceiling reached 28°C - this result is almost four times better than the chimney standard requirement. Furthermore, a developed CFD model exhibited high accuracy compared to the experimental results and can be used for designing this type of chimney and other research and expert work, such as that performed after fires in buildings originating from the chimney. The article describes CFD analyses and tests of an innovative chimney in a perlite-concrete casing. The described research showed the high safety of such a chimney during soot fires. The results obtained can be used to develop changes in standards to improve the safety of chimneys and design safer and more efficient ones. The author’s chimney model and CFD analysis make it possible to determine the temperatures in the chimney during a soot fire. This CFD model allows you to assess the fire safety of the chimney and the building elements located in its vicinity.
{"title":"Fire safety study of a perlite concrete chimney and wooden ceilings used in buildings based on experimental tests and CFD analysis","authors":"K. Drozdzol, Mateusz Kowalski, Elzbieta Kokocinska–Pakiet, Robert Junga, Jiri Horak","doi":"10.1177/01436244241231357","DOIUrl":"https://doi.org/10.1177/01436244241231357","url":null,"abstract":"The operation of fuel-burning heating equipment results in soot build-up in the flues. Its ignition poses a significant fire risk to the building, as the flue temperature can reach 1000°C. Wooden structural elements located near the chimney (ceilings and roof penetrations) are particularly vulnerable. To date, research has focused on the fire safety of wooden ceiling elements. This is where, due to heat radiation from the chimney, wooden elements significantly increase their temperature and become the location of fire initiation in the buildings. The task of chimney designers is to limit the temperatures of heated wooden building components near these structures. The present work analysed a ceramic and concrete chimney with air space with an innovative perlite concrete casing with a dual-function (load-bearing and thermal insulation). Computational Fluid Dynamics (CFD) analyses verified by a full-scale experiment were conducted to evaluate the fire safety of wooden building ceilings. The tests showed that a high level of safety characterised the chimney under study. The maximum temperature of the casing when testing the soot fire reached 38°C, and the wooden elements simulating the ceiling reached 28°C - this result is almost four times better than the chimney standard requirement. Furthermore, a developed CFD model exhibited high accuracy compared to the experimental results and can be used for designing this type of chimney and other research and expert work, such as that performed after fires in buildings originating from the chimney. The article describes CFD analyses and tests of an innovative chimney in a perlite-concrete casing. The described research showed the high safety of such a chimney during soot fires. The results obtained can be used to develop changes in standards to improve the safety of chimneys and design safer and more efficient ones. The author’s chimney model and CFD analysis make it possible to determine the temperatures in the chimney during a soot fire. This CFD model allows you to assess the fire safety of the chimney and the building elements located in its vicinity.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"12 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139889926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1177/01436244231226304
A. Werner-Juszczuk, Alicja Siuta-Olcha
This paper examines the viability of using a radiant panel in lightweight low-height floor heating. In this structure, a dry screed with high thermal resistance is replaced by a low-resistance adhesive layer with reinforcement mesh. The absence of the radiant panel results in a reduction in heat output of 5%–17% for floor finishes with a thermal resistance of 0.001 m2K/W, 50%–54% for 0.05 m2K/W and 60%–62% for 0.1 m2K/W. A structure with a panel is characterised by a lower surface temperature amplitude (maximum 2.4 K) compared to a structure without it (8.8 K), which improves the comfort of floor users. The annual heating cost in a building equipped with the analysed structures was determined. The absence of the panel resulted in a cost increase of 13%, 37% and 79% for floor finish resistances of 0.001, 0.05 and 0.1 m2K/W, respectively. The SPBT for the purchase of radiant panels is 40 years for a floor resistance of 0.001 m2K/W, demonstrating the unprofitability of this solution. For resistances of 0.05 and 0.1 m2K/W, SPBT was 14 and 6 years, respectively. The choice of floor heating system should take into account the required heat output, thermal comfort and economic aspects. This paper assesses the validity of using radiant panels in a low-height floor heating structure, where the dry screed layer is replaced by an adhesive layer with reinforcement mesh. This structure is gaining popularity due to its quick installation and low height but has the disadvantage of the high panel cost. The paper evaluates the effect of panels on heat output and identifies the conditions under which their use is economically justified. Recipients of results are designers and contractors of heating systems. The recommendations can be the basis for selecting the optimum design solution for a lightweight floor heating system.
{"title":"Assessment of the validity of using a radiant panel in the low-height floor heating","authors":"A. Werner-Juszczuk, Alicja Siuta-Olcha","doi":"10.1177/01436244231226304","DOIUrl":"https://doi.org/10.1177/01436244231226304","url":null,"abstract":"This paper examines the viability of using a radiant panel in lightweight low-height floor heating. In this structure, a dry screed with high thermal resistance is replaced by a low-resistance adhesive layer with reinforcement mesh. The absence of the radiant panel results in a reduction in heat output of 5%–17% for floor finishes with a thermal resistance of 0.001 m2K/W, 50%–54% for 0.05 m2K/W and 60%–62% for 0.1 m2K/W. A structure with a panel is characterised by a lower surface temperature amplitude (maximum 2.4 K) compared to a structure without it (8.8 K), which improves the comfort of floor users. The annual heating cost in a building equipped with the analysed structures was determined. The absence of the panel resulted in a cost increase of 13%, 37% and 79% for floor finish resistances of 0.001, 0.05 and 0.1 m2K/W, respectively. The SPBT for the purchase of radiant panels is 40 years for a floor resistance of 0.001 m2K/W, demonstrating the unprofitability of this solution. For resistances of 0.05 and 0.1 m2K/W, SPBT was 14 and 6 years, respectively. The choice of floor heating system should take into account the required heat output, thermal comfort and economic aspects. This paper assesses the validity of using radiant panels in a low-height floor heating structure, where the dry screed layer is replaced by an adhesive layer with reinforcement mesh. This structure is gaining popularity due to its quick installation and low height but has the disadvantage of the high panel cost. The paper evaluates the effect of panels on heat output and identifies the conditions under which their use is economically justified. Recipients of results are designers and contractors of heating systems. The recommendations can be the basis for selecting the optimum design solution for a lightweight floor heating system.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139624143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1177/01436244241226544
Rujie Xia, Delu Li, Meiqin Xiangli, Xiling Gao, Bingbing Li
The use of high-conductivity porous medium is an effective method to enhance the heat transfer rate of phase change material (PCM) in thermal energy storage (TES), reducing the energy consumption of low-carbon buildings. This paper establishes a solid-liquid phase change lattice Boltzmann model of a TES unit and investigates the effects of Rayleigh number, inclination angle, porous array, and porosity. The findings indicate that inserting the porous medium enhances conductive heat transfer and weakens convective heat transfer. When the Rayleigh number is increased from 103 to 104, the liquid fraction increases by 3.0%, while an increase from 104 to 105 only results in a 1.6% increase, suggesting a diminishing effect of increasing the Rayleigh number. Results also show that the inclination angle can be disregarded in this study. Furthermore, increasing the specific surface area enhances conductive heat transfer. However, when the array n is changed to 7, the fastest variation of liquid fraction is obtained among the range from 5 to 9. Increasing the porosity will delay the moment that temperature standard deviation reaches to the maximum, getting the temperature distribution more nonuniform. The findings from this paper are valuable for the design of TES systems in low-carbon buildings. The porous medium can enhance heat transfer in the phase change process. In the field of low-carbon buildings, porous medium is applied to strengthen the energy storage rate. By investigating the parameters of the Rayleigh numbers, inclination angles, porosities and arrangement of porous medium arrays of the composed energy storage unit, the regularity of the effects on the energy characteristics are obtained, which would provide some valuable practice references for designing these parameters of the energy storage units in the future energy-efficient building sector.
{"title":"Heat transfer investigation on the thermal energy storage using phase change material in low-carbon building","authors":"Rujie Xia, Delu Li, Meiqin Xiangli, Xiling Gao, Bingbing Li","doi":"10.1177/01436244241226544","DOIUrl":"https://doi.org/10.1177/01436244241226544","url":null,"abstract":"The use of high-conductivity porous medium is an effective method to enhance the heat transfer rate of phase change material (PCM) in thermal energy storage (TES), reducing the energy consumption of low-carbon buildings. This paper establishes a solid-liquid phase change lattice Boltzmann model of a TES unit and investigates the effects of Rayleigh number, inclination angle, porous array, and porosity. The findings indicate that inserting the porous medium enhances conductive heat transfer and weakens convective heat transfer. When the Rayleigh number is increased from 103 to 104, the liquid fraction increases by 3.0%, while an increase from 104 to 105 only results in a 1.6% increase, suggesting a diminishing effect of increasing the Rayleigh number. Results also show that the inclination angle can be disregarded in this study. Furthermore, increasing the specific surface area enhances conductive heat transfer. However, when the array n is changed to 7, the fastest variation of liquid fraction is obtained among the range from 5 to 9. Increasing the porosity will delay the moment that temperature standard deviation reaches to the maximum, getting the temperature distribution more nonuniform. The findings from this paper are valuable for the design of TES systems in low-carbon buildings. The porous medium can enhance heat transfer in the phase change process. In the field of low-carbon buildings, porous medium is applied to strengthen the energy storage rate. By investigating the parameters of the Rayleigh numbers, inclination angles, porosities and arrangement of porous medium arrays of the composed energy storage unit, the regularity of the effects on the energy characteristics are obtained, which would provide some valuable practice references for designing these parameters of the energy storage units in the future energy-efficient building sector.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"28 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}