{"title":"Developing a Repeated Multi-agent Constant-Sum Game Algorithm Using Human Computation","authors":"Christopher G. Harris","doi":"10.1109/WI-IAT.2012.175","DOIUrl":null,"url":null,"abstract":"In repeated multi-agent constant-sum games, each player's objective is to maximize control over a finite set of resources. We introduce Tens potter, an easy-to-use publicly-available game designed to allow human players to compete as agents against a machine algorithm. The algorithm learns play strategies from humans, reduces them to nine basic strategies, and uses this knowledge to build and adapt its collusion strategy. We use a tournament format to test our algorithm against human players as well as against other established multi-agent algorithms taken from the literature. Through these tournament experiments, we demonstrate how learning techniques adapted using human computation -- information obtained from both human and machine inputs -- can contribute to the development of an algorithm able to defeat two well-established multi-agent machine algorithms in tournament play.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In repeated multi-agent constant-sum games, each player's objective is to maximize control over a finite set of resources. We introduce Tens potter, an easy-to-use publicly-available game designed to allow human players to compete as agents against a machine algorithm. The algorithm learns play strategies from humans, reduces them to nine basic strategies, and uses this knowledge to build and adapt its collusion strategy. We use a tournament format to test our algorithm against human players as well as against other established multi-agent algorithms taken from the literature. Through these tournament experiments, we demonstrate how learning techniques adapted using human computation -- information obtained from both human and machine inputs -- can contribute to the development of an algorithm able to defeat two well-established multi-agent machine algorithms in tournament play.