Noise-Robust Representation for Fault Identification with Limited Data via Data Augmentation

Zahra Taghiyarrenani, A. Berenji
{"title":"Noise-Robust Representation for Fault Identification with Limited Data via Data Augmentation","authors":"Zahra Taghiyarrenani, A. Berenji","doi":"10.36001/phme.2022.v7i1.3334","DOIUrl":null,"url":null,"abstract":"Noise will be unavoidably present in the data collected from physical environments, regardless of how sophisticated the measurement equipment is. Furthermore, collecting enough faulty data is a challenge since operating industrial machines in faulty modes not only has severe consequences to the machine health, but also may affect collateral machinery critically, from health state point of view. In this paper, we propose a method of denoising with limited data for the purpose of fault identification. In addition, our method is capable of removing multiple levels of noise simultaneously. For this purpose, inspired by unsupervised contrastive learning, we first augment the data with multiple levels of noise. Later, we construct a new feature representation using Contrastive Loss. The last step is building a classifier on top of the learned representation; this classifier can detect various faults in noisy environments. The experiments on the SOUTHEAST UNIVERSITY (SEU) dataset of bearings confirm that our method can simultaneously remove multiple noise levels.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Noise will be unavoidably present in the data collected from physical environments, regardless of how sophisticated the measurement equipment is. Furthermore, collecting enough faulty data is a challenge since operating industrial machines in faulty modes not only has severe consequences to the machine health, but also may affect collateral machinery critically, from health state point of view. In this paper, we propose a method of denoising with limited data for the purpose of fault identification. In addition, our method is capable of removing multiple levels of noise simultaneously. For this purpose, inspired by unsupervised contrastive learning, we first augment the data with multiple levels of noise. Later, we construct a new feature representation using Contrastive Loss. The last step is building a classifier on top of the learned representation; this classifier can detect various faults in noisy environments. The experiments on the SOUTHEAST UNIVERSITY (SEU) dataset of bearings confirm that our method can simultaneously remove multiple noise levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据增强的有限数据故障识别的噪声鲁棒表示
无论测量设备有多精密,从物理环境中收集的数据都不可避免地存在噪声。此外,收集足够的故障数据是一项挑战,因为在故障模式下运行工业机器不仅会对机器健康造成严重后果,而且从健康状态的角度来看,还可能严重影响附属机器。本文提出了一种基于有限数据去噪的故障识别方法。此外,我们的方法能够同时去除多级噪声。为此,受无监督对比学习的启发,我们首先用多级噪声增强数据。随后,我们利用对比损失构造了一个新的特征表示。最后一步是在学习到的表示之上建立一个分类器;该分类器可以在噪声环境中检测出各种故障。在东南大学(SEU)轴承数据集上的实验证实了该方法可以同时去除多个噪声级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings Novel Methodology for Health Assessment in Printed Circuit Boards On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1