Learning Dense Correspondence from Synthetic Environments

Mithun Lal, Anthony Paproki, N. Habili, L. Petersson, Olivier Salvado, C. Fookes
{"title":"Learning Dense Correspondence from Synthetic Environments","authors":"Mithun Lal, Anthony Paproki, N. Habili, L. Petersson, Olivier Salvado, C. Fookes","doi":"10.1109/DICTA56598.2022.10034586","DOIUrl":null,"url":null,"abstract":"Estimation of human shape and pose from a single image is a challenging task. It is an even more difficult problem to map the identified human shape onto a 3D human model. Existing methods map manually labelled human pixels in real 2D images onto the 3D surface, which is prone to human error, and the sparsity of available annotated data often leads to sub-optimal results. We propose to solve the problem of data scarcity by training 2D-3D human mapping algorithms using automatically generated synthetic data for which exact and dense 2D-3D correspondence is known. Such a learning strategy using synthetic environments has a high generalisation potential towards real-world data. Using different camera parameter variations, background and lighting settings, we created precise ground truth data that constitutes a wider distribution. We evaluate the performance of models trained on synthetic using the Common Objects In Context (COCO) dataset and validation framework. Results show that training 2D-3D mapping network models on synthetic data is a viable alternative to using real data.","PeriodicalId":159377,"journal":{"name":"2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA56598.2022.10034586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of human shape and pose from a single image is a challenging task. It is an even more difficult problem to map the identified human shape onto a 3D human model. Existing methods map manually labelled human pixels in real 2D images onto the 3D surface, which is prone to human error, and the sparsity of available annotated data often leads to sub-optimal results. We propose to solve the problem of data scarcity by training 2D-3D human mapping algorithms using automatically generated synthetic data for which exact and dense 2D-3D correspondence is known. Such a learning strategy using synthetic environments has a high generalisation potential towards real-world data. Using different camera parameter variations, background and lighting settings, we created precise ground truth data that constitutes a wider distribution. We evaluate the performance of models trained on synthetic using the Common Objects In Context (COCO) dataset and validation framework. Results show that training 2D-3D mapping network models on synthetic data is a viable alternative to using real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从合成环境中学习密集对应
从单个图像中估计人体形状和姿势是一项具有挑战性的任务。将已识别的人体形状映射到3D人体模型上是一个更加困难的问题。现有的方法是将真实2D图像中人工标记的人类像素映射到3D表面上,这很容易出现人为错误,并且可用注释数据的稀疏性往往导致次优结果。我们建议通过使用已知精确和密集的2D-3D对应的自动生成的合成数据来训练2D-3D人体映射算法来解决数据稀缺问题。这种使用合成环境的学习策略对现实世界的数据具有很高的泛化潜力。使用不同的相机参数变化,背景和照明设置,我们创建了精确的地面真实数据,构成了更广泛的分布。我们使用上下文中的公共对象(COCO)数据集和验证框架评估在合成上训练的模型的性能。结果表明,在合成数据上训练2D-3D映射网络模型是一种可行的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FootSeg: Automatic Anatomical Segmentation of Foot Bones from Weight-Bearing Cone Beam CT Scans KENGIC: KEyword-driven and N-Gram Graph based Image Captioning Swin-ResUNet: A Swin-Topology Module for Road Extraction from Remote Sensing Images A Multi-Granularity Feature Fusion Model for Pedestrian Attribute Recognition Disentangling Convolutional Neural Network towards an explainable Vehicle Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1