Style Image Retrieval for Improving Material Translation Using Neural Style Transfer

Gibran Benitez-Garcia, Wataru Shimoda, Keiji Yanai
{"title":"Style Image Retrieval for Improving Material Translation Using Neural Style Transfer","authors":"Gibran Benitez-Garcia, Wataru Shimoda, Keiji Yanai","doi":"10.1145/3379173.3393707","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a CNN-feature-based image retrieval method to find the ideal style image that better translates the material of an object. An ideal style image must share semantic information with the content image, while containing distinctive characteristics of the desired material. Therefore, we first refine the search by selecting the most discriminative images from the target material. Subsequently, our search process focuses on the object semantics by removing the style information using instance normalization whitening. Thus, the search is performed using the normalized CNN features. In order to translate materials to object regions, we combine semantic segmentation with neural style transfer. We segment objects from the content image by using a weakly supervised segmentation method, and transfer the material of the retrieved style image to the segmented areas. We demonstrate quantitatively and qualitatively that by using ideal style images, the results of the conventional neural style transfer are significantly improved, overcoming state-of-the-art approaches, such as WCT, MUNIT, and StarGAN.","PeriodicalId":416027,"journal":{"name":"Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379173.3393707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a CNN-feature-based image retrieval method to find the ideal style image that better translates the material of an object. An ideal style image must share semantic information with the content image, while containing distinctive characteristics of the desired material. Therefore, we first refine the search by selecting the most discriminative images from the target material. Subsequently, our search process focuses on the object semantics by removing the style information using instance normalization whitening. Thus, the search is performed using the normalized CNN features. In order to translate materials to object regions, we combine semantic segmentation with neural style transfer. We segment objects from the content image by using a weakly supervised segmentation method, and transfer the material of the retrieved style image to the segmented areas. We demonstrate quantitatively and qualitatively that by using ideal style images, the results of the conventional neural style transfer are significantly improved, overcoming state-of-the-art approaches, such as WCT, MUNIT, and StarGAN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经风格迁移的风格图像检索改进材料翻译
在本文中,我们提出了一种基于cnn特征的图像检索方法,以寻找更好地翻译物体材料的理想风格图像。一个理想的风格图像必须与内容图像共享语义信息,同时包含所需材料的鲜明特征。因此,我们首先通过从目标材料中选择最具判别性的图像来细化搜索。随后,我们的搜索过程将重点放在对象语义上,使用实例规范化白化去除样式信息。因此,使用归一化的CNN特征执行搜索。为了将材料翻译成目标区域,我们将语义分割与神经风格迁移相结合。我们使用弱监督分割方法从内容图像中分割出对象,并将检索到的风格图像的材料转移到分割的区域中。我们在定量和定性上证明,通过使用理想风格图像,传统神经风格迁移的结果显着改善,克服了最先进的方法,如WCT, MUNIT和StarGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic YouTube-Thumbnail Generation and Its Evaluation Proceedings of the 2020 Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia Style Image Retrieval for Improving Material Translation Using Neural Style Transfer Session details: Attractiveness Computing in Multimedia BatikGAN: A Generative Adversarial Network for Batik Creation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1