Machine-learning-based interatomic potentials for advanced manufacturing

IF 3.4 Q1 ENGINEERING, MECHANICAL 国际机械系统动力学学报(英文) Pub Date : 2021-12-30 DOI:10.1002/msd2.12021
Wei Yu, Chaoyue Ji, Xuhao Wan, Zhaofu Zhang, John Robertson, Sheng Liu, Yuzheng Guo
{"title":"Machine-learning-based interatomic potentials for advanced manufacturing","authors":"Wei Yu,&nbsp;Chaoyue Ji,&nbsp;Xuhao Wan,&nbsp;Zhaofu Zhang,&nbsp;John Robertson,&nbsp;Sheng Liu,&nbsp;Yuzheng Guo","doi":"10.1002/msd2.12021","DOIUrl":null,"url":null,"abstract":"<p>This paper summarizes the progress of machine-learning-based interatomic potentials and their applications in advanced manufacturing. Interatomic potential is essential for classical molecular dynamics. The advancements made in machine learning (ML) have enabled the development of fast interatomic potential with ab initio accuracy. The accelerated atomic simulation can greatly transform the design principle of manufacturing technology. The most widely used supervised and unsupervised ML methods are summarized and compared. Then, the emerging interatomic models based on ML are discussed: Gaussian approximation potential, spectral neighbor analysis potential, deep potential molecular dynamics, SCHNET, hierarchically interacting particle neural network, and fast learning of atomistic rare events.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"1 2","pages":"159-172"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12021","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

This paper summarizes the progress of machine-learning-based interatomic potentials and their applications in advanced manufacturing. Interatomic potential is essential for classical molecular dynamics. The advancements made in machine learning (ML) have enabled the development of fast interatomic potential with ab initio accuracy. The accelerated atomic simulation can greatly transform the design principle of manufacturing technology. The most widely used supervised and unsupervised ML methods are summarized and compared. Then, the emerging interatomic models based on ML are discussed: Gaussian approximation potential, spectral neighbor analysis potential, deep potential molecular dynamics, SCHNET, hierarchically interacting particle neural network, and fast learning of atomistic rare events.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进制造中基于机器学习的原子间势
本文综述了基于机器学习的原子间势及其在先进制造业中的应用进展。原子间势在经典分子动力学中是必不可少的。机器学习(ML)的进步使原子间相互作用的快速发展具有从头算的准确性。加速原子仿真可以极大地改变制造技术的设计原理。总结和比较了目前应用最广泛的有监督和无监督机器学习方法。然后,讨论了基于机器学习的原子间相互作用模型:高斯逼近势、谱邻居分析势、深势分子动力学、SCHNET、层次相互作用粒子神经网络和原子稀有事件的快速学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 4, Number 3, September 2024 Design of bionic water jet thruster with double-chamber driven by electromagnetic force A data-assisted physics-informed neural network (DA-PINN) for fretting fatigue lifetime prediction Comparison of the performance and dynamics of the asymmetric single-sided and symmetric double-sided vibro-impact nonlinear energy sinks with optimized designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1