Real-Time Handwritten Letters Recognition on an Embedded Computer Using ConvNets

Dennis Núñez, Sepidehsadat Hosseini
{"title":"Real-Time Handwritten Letters Recognition on an Embedded Computer Using ConvNets","authors":"Dennis Núñez, Sepidehsadat Hosseini","doi":"10.1109/SHIRCON.2018.8592981","DOIUrl":null,"url":null,"abstract":"This paper describes the design and implementation of a convolutional neural network for 26 handwritten letters recognition on a regular embedded computer. Recognition task is carried out using a customized convolutional neural network, designed to work with low computational resources. Furthermore, training was conducted on the recently published dataset EMNIST. The experimental results show that the proposed neural network achieves an outstanding accuracy rate compared to similar architectures, also, inference shows a fast response time on a Raspberry Pi 3 board.","PeriodicalId":408525,"journal":{"name":"2018 IEEE Sciences and Humanities International Research Conference (SHIRCON)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Sciences and Humanities International Research Conference (SHIRCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHIRCON.2018.8592981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes the design and implementation of a convolutional neural network for 26 handwritten letters recognition on a regular embedded computer. Recognition task is carried out using a customized convolutional neural network, designed to work with low computational resources. Furthermore, training was conducted on the recently published dataset EMNIST. The experimental results show that the proposed neural network achieves an outstanding accuracy rate compared to similar architectures, also, inference shows a fast response time on a Raspberry Pi 3 board.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的嵌入式计算机实时手写字母识别
本文介绍了在普通嵌入式计算机上进行26个手写字母识别的卷积神经网络的设计与实现。识别任务使用定制的卷积神经网络进行,设计用于低计算资源的工作。此外,在最近发布的数据集EMNIST上进行了训练。实验结果表明,与同类结构相比,所提出的神经网络达到了出色的准确率,并且在树莓派3板上的推理显示出快速的响应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maturity Model for Long-Distance Passenger Land Peruvian Transport Companies Sciences and Humanities International Research Conference Comparative Analysis of Technologies for Audio Data Transmission Descriptive Study of the Ionosphere Charge Variation as a Preamble of Worldwide Earthquakes During 2016 Identifying and Modeling Psychosocial Risk of Young Population in Large Latin American Cities by Using Shannon Entropy and Random Variable Distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1