Research on judgment reasoning using natural language inference in Chinese medical texts

Xin Li, Wenping Kong
{"title":"Research on judgment reasoning using natural language inference in Chinese medical texts","authors":"Xin Li, Wenping Kong","doi":"10.1145/3508230.3508248","DOIUrl":null,"url":null,"abstract":"Machine reading comprehension (MRC) is a task used to test the degree to which a machine understands natural language by asking the machine to answer questions according to a given context. Judgment reasoning is one of MRC tasks which means that given a context and questions, let machine gives the true and false answers, for some real-world data, there will be another option of unknown. Considering the current research status, this paper uses natural language inference (NLI) models to further study this judgment reasoning task, which is mainly to judge the semantic relationship between two sentences. In our paper, we first explain how the NLI task can be used to train universal sentence encoding models in the judgment reasoning process and subsequently describe the architectures used in NLI task, which covers a suitable range of sentence encoders currently in use and take the bi-directional long short-term memory (BI-LSTM) model with max-pooling over the hidden representations as an example explained in this paper. After some comparative experiments, we have verified that our NLI models are effective strategies to improve the performance of judgment reasoning in Chinese medical texts, which can effectively improve the accuracy values.","PeriodicalId":252146,"journal":{"name":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508230.3508248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine reading comprehension (MRC) is a task used to test the degree to which a machine understands natural language by asking the machine to answer questions according to a given context. Judgment reasoning is one of MRC tasks which means that given a context and questions, let machine gives the true and false answers, for some real-world data, there will be another option of unknown. Considering the current research status, this paper uses natural language inference (NLI) models to further study this judgment reasoning task, which is mainly to judge the semantic relationship between two sentences. In our paper, we first explain how the NLI task can be used to train universal sentence encoding models in the judgment reasoning process and subsequently describe the architectures used in NLI task, which covers a suitable range of sentence encoders currently in use and take the bi-directional long short-term memory (BI-LSTM) model with max-pooling over the hidden representations as an example explained in this paper. After some comparative experiments, we have verified that our NLI models are effective strategies to improve the performance of judgment reasoning in Chinese medical texts, which can effectively improve the accuracy values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自然语言推理的中医文本判断推理研究
机器阅读理解(MRC)是一项测试机器理解自然语言程度的任务,通过要求机器根据给定的上下文回答问题。判断推理是MRC任务之一,这意味着给定上下文和问题,让机器给出正确和错误的答案,对于一些现实世界的数据,会有另一种未知的选择。考虑到目前的研究现状,本文利用自然语言推理(NLI)模型进一步研究这一判断推理任务,该任务主要是判断两个句子之间的语义关系。在本文中,我们首先解释了在判断推理过程中如何使用NLI任务来训练通用句子编码模型,随后描述了NLI任务中使用的架构,该架构涵盖了当前使用的合适范围的句子编码器,并以双向长短期记忆(BI-LSTM)模型为例进行了解释。经过一些对比实验,我们验证了我们的NLI模型是提高中医文本判断推理性能的有效策略,可以有效地提高准确率值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pandemic rumor identification on social networking sites: A case study of COVID-19 Research on Domain Emotion Dictionary Construction Method based on Improved SO-PMI Algorithm Topic Segmentation for Interview Dialogue System Method of Graphical User Interface Adaptation Using Reinforcement Learning and Automated Testing Prediction of Number of Likes and Retweets based on the Features of Tweet Text and Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1