A Reconfigurable ASIP for 802.11 Packet Detection Algorithm

Refael Avez, S. Weiss
{"title":"A Reconfigurable ASIP for 802.11 Packet Detection Algorithm","authors":"Refael Avez, S. Weiss","doi":"10.1109/ICSEE.2018.8646196","DOIUrl":null,"url":null,"abstract":"With the significant increase of wireless standards in recent years, reconfigurable programmable architectures have started to attract more attention and interest. One of the solutions that has gained more industry-popularity is the Application Specific Instruction-Set (ASIP) Processor, which provides an innovative approach for obtaining flexibility with relatively small increases in area and power. In this article we will present the development of an optimized ASIP that is tailored to the needs of detecting packets based on the 802.11 standard, and uses a retargetable compilation flow. We will present several optimizations that can be used to optimize both the algorithm and the processor model. These enhancements increase the performance by a factor of 20 and decrease significantly the power consumption relative to a 16bit general purpose processor model. While the proposed configurable ASIP was applied to multiple packet detection standards based on OFDM or DSSS modulations such as 802.11a/g/n and 802.11b/1997 respectively, it was verified on an ODFM 802.11a/g/n system. Most of our analysis focuses on OFDM systems, however, it also applies to DSSS systems. In addition, we present a comparison between the proposed ASIP and a dedicated hardware solution over ASIC in terms of performance power and area.","PeriodicalId":254455,"journal":{"name":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEE.2018.8646196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the significant increase of wireless standards in recent years, reconfigurable programmable architectures have started to attract more attention and interest. One of the solutions that has gained more industry-popularity is the Application Specific Instruction-Set (ASIP) Processor, which provides an innovative approach for obtaining flexibility with relatively small increases in area and power. In this article we will present the development of an optimized ASIP that is tailored to the needs of detecting packets based on the 802.11 standard, and uses a retargetable compilation flow. We will present several optimizations that can be used to optimize both the algorithm and the processor model. These enhancements increase the performance by a factor of 20 and decrease significantly the power consumption relative to a 16bit general purpose processor model. While the proposed configurable ASIP was applied to multiple packet detection standards based on OFDM or DSSS modulations such as 802.11a/g/n and 802.11b/1997 respectively, it was verified on an ODFM 802.11a/g/n system. Most of our analysis focuses on OFDM systems, however, it also applies to DSSS systems. In addition, we present a comparison between the proposed ASIP and a dedicated hardware solution over ASIC in terms of performance power and area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种可重构的802.11报文检测算法ASIP
近年来,随着无线标准的显著增加,可重构可编程架构开始引起越来越多的关注和兴趣。应用特定指令集(Application Specific Instruction-Set, ASIP)处理器是在业界获得更多知名度的解决方案之一,它提供了一种创新的方法,可以在相对较小的面积和功耗增加的情况下获得灵活性。在本文中,我们将介绍一个优化的ASIP的开发,该ASIP是针对基于802.11标准检测数据包的需求量身定制的,并使用可重新定位的编译流。我们将介绍几个可用于优化算法和处理器模型的优化。与16位通用处理器模型相比,这些增强功能将性能提高了20倍,并显著降低了功耗。提出的可配置ASIP分别应用于基于OFDM或DSSS调制的多种分组检测标准,如802.11a/g/n和802.11b/1997,并在ODFM 802.11a/g/n系统上进行了验证。我们的大部分分析都集中在OFDM系统上,然而,它也适用于DSSS系统。此外,我们在性能、功耗和面积方面比较了所提出的ASIP和专用硬件解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Motion Compensation for Forensic Analysis of Egocentric Video using Joint Stabilization and Tracking DC low current Hall effect measurements Examining Change Detection Methods For Hyperspectral Data Effect of Reverberation in Speech-based Emotion Recognition Traveling-Wave Ring Oscillator – Simulations and Prototype Measurements for a New Architecture for a Transmission Line Based Oscillator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1