Yang Liu, Miaohui Zhang, Pengtao Xu, Zhengyang Guo
{"title":"SAR ship detection using sea-land segmentation-based convolutional neural network","authors":"Yang Liu, Miaohui Zhang, Pengtao Xu, Zhengyang Guo","doi":"10.1109/RSIP.2017.7958806","DOIUrl":null,"url":null,"abstract":"Reliable automatic ship detection in Synthetic Aperture Radar (SAR) imagery plays an important role in the surveillance of maritime activity. Apart from the well-known Spectral Residual (SR) and CFAR detector, there has emerged a novel method for SAR ship detection, based on the deep learning features. Within this paper, we present a framework of Sea-Land Segmentation-based Convolutional Neural Network (SLS-CNN) for ship detection that attempts to combine the SLS-CNN detector, saliency computation and corner features. For this, sea-land segmentation based on the heat map of SR saliency and probability distribution of the corner is applied, which is followed by SLS-CNN detector, and a final merged minimum bounding rectangles. The framework has been tested and assessed on ALOS PALSAR and TerraSAR-X imagery. Experimental results on representative SAR images of different kinds of ships demonstrate the efficiency and robustness of our proposed SLS-CNN detector.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
Reliable automatic ship detection in Synthetic Aperture Radar (SAR) imagery plays an important role in the surveillance of maritime activity. Apart from the well-known Spectral Residual (SR) and CFAR detector, there has emerged a novel method for SAR ship detection, based on the deep learning features. Within this paper, we present a framework of Sea-Land Segmentation-based Convolutional Neural Network (SLS-CNN) for ship detection that attempts to combine the SLS-CNN detector, saliency computation and corner features. For this, sea-land segmentation based on the heat map of SR saliency and probability distribution of the corner is applied, which is followed by SLS-CNN detector, and a final merged minimum bounding rectangles. The framework has been tested and assessed on ALOS PALSAR and TerraSAR-X imagery. Experimental results on representative SAR images of different kinds of ships demonstrate the efficiency and robustness of our proposed SLS-CNN detector.