A fuzzy methodology to improve time series forecast of power demand in distribution systems

L. Moraes, R. Flauzino, M. Araújo, O. E. Batista
{"title":"A fuzzy methodology to improve time series forecast of power demand in distribution systems","authors":"L. Moraes, R. Flauzino, M. Araújo, O. E. Batista","doi":"10.1109/PESMG.2013.6672491","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce a methodology for choosing the best inputs and tuning a multilayer fuzzy inference system dedicated to estimate future time series power demand values in a substation feeder. On an iteration process, older data with greater correlation with the previous forecast errors are the inputs of the fuzzy system, which has as output a future demand value. It is attempted to estimate the largest possible horizon reaching the minimum forecast error. The obtained results are satisfactory, showing that the developed methodology is capable of picking a small number of inputs to forecast with accuracy different horizons.","PeriodicalId":433870,"journal":{"name":"2013 IEEE Power & Energy Society General Meeting","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESMG.2013.6672491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper aims to introduce a methodology for choosing the best inputs and tuning a multilayer fuzzy inference system dedicated to estimate future time series power demand values in a substation feeder. On an iteration process, older data with greater correlation with the previous forecast errors are the inputs of the fuzzy system, which has as output a future demand value. It is attempted to estimate the largest possible horizon reaching the minimum forecast error. The obtained results are satisfactory, showing that the developed methodology is capable of picking a small number of inputs to forecast with accuracy different horizons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进配电系统电力需求时序预测的模糊方法
本文旨在介绍一种选择最佳输入和调整多层模糊推理系统的方法,该系统用于估计变电站馈线的未来时间序列电力需求值。在迭代过程中,与先前预测误差相关性较大的旧数据是模糊系统的输入,其输出是未来需求值。它试图估计达到最小预报误差的最大可能地平线。所得结果令人满意,表明所开发的方法能够选择少量的输入,以准确地预测不同的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterizing statistical bounds on aggregated demand-based primary frequency control SGSim: A unified smart grid simulator FIDVR events analysis part 1 Solid state transformer in the future smart electrical system Challenges for special protection systems in the Chilean electricity market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1