Modulation spectra for automatic detection of Parkinson's disease

T. Villa-Cañas, J. Orozco-Arroyave, J. Vargas-Bonilla, J. D. Arias-Londoño
{"title":"Modulation spectra for automatic detection of Parkinson's disease","authors":"T. Villa-Cañas, J. Orozco-Arroyave, J. Vargas-Bonilla, J. D. Arias-Londoño","doi":"10.1109/STSIVA.2014.7010173","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the information provided by a joint acoustic and modulation frequency representation, referred as modulation spectrum, for detection of people with Parkinsons disease through speech signals. The set of features includes the centroids and the energy content of different frequency bands in the modulation spectra of the recordings. Additionally, with the aim to eliminate possible redundancy in the information provided by the features, two different feature extraction techniques are applied, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The classification was done by means of Gaussian mixture model (GMM). The results show that this approach is acceptable for this purpose, with the best accuracy around 71% for vowel /i/.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we explore the information provided by a joint acoustic and modulation frequency representation, referred as modulation spectrum, for detection of people with Parkinsons disease through speech signals. The set of features includes the centroids and the energy content of different frequency bands in the modulation spectra of the recordings. Additionally, with the aim to eliminate possible redundancy in the information provided by the features, two different feature extraction techniques are applied, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The classification was done by means of Gaussian mixture model (GMM). The results show that this approach is acceptable for this purpose, with the best accuracy around 71% for vowel /i/.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于帕金森病自动检测的调制光谱
在本文中,我们探索了通过语音信号检测帕金森病患者的联合声学和调制频率表示(称为调制频谱)提供的信息。特征集包括记录调制谱中不同频带的质心和能量含量。此外,为了消除特征提供的信息中可能存在的冗余,应用了两种不同的特征提取技术,主成分分析(PCA)和线性判别分析(LDA)。采用高斯混合模型(GMM)进行分类。结果表明,这种方法是可以接受的,对于元音/i/,准确率最高在71%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system Causality analysis of P300 recordings focused on the localization of active brain areas Novel spectral characteristics of the electrical current waveform to quantifying power quality on LED lamps Comparison of preprocessing methods for diffusion tensor estimation in brain imaging Pattern recognition of hypernasality in voice of patients with Cleft and Lip Palate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1