A novel parametric SAR autofocus method

Jia Xu, Yingning Peng, Liping Zhang, Yin-shen Lin, Xianggen Xia
{"title":"A novel parametric SAR autofocus method","authors":"Jia Xu, Yingning Peng, Liping Zhang, Yin-shen Lin, Xianggen Xia","doi":"10.1109/NRC.2004.1316394","DOIUrl":null,"url":null,"abstract":"In synthetic aperture radar (SAR), low scene-contrast may invalidate most of the existing autofocus methods, and the limited autofocus performance is also difficult to verify. Based on a parametric statistical signal model in the coherent processing interval (CPI) of SAR, a novel SAR autofocus method is developed and it is especially applicable to extremely low-contrast scenes. Furthermore, the limitation of CPI length and the Cramer-Rao low bound of the autofocus parameter estimation are all analytically obtained. Finally, real measurement data is also exploited to validate the proposed model and the new method.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In synthetic aperture radar (SAR), low scene-contrast may invalidate most of the existing autofocus methods, and the limited autofocus performance is also difficult to verify. Based on a parametric statistical signal model in the coherent processing interval (CPI) of SAR, a novel SAR autofocus method is developed and it is especially applicable to extremely low-contrast scenes. Furthermore, the limitation of CPI length and the Cramer-Rao low bound of the autofocus parameter estimation are all analytically obtained. Finally, real measurement data is also exploited to validate the proposed model and the new method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的参数化SAR自动对焦方法
在合成孔径雷达(SAR)中,低场景对比度可能会使大多数现有的自动对焦方法失效,并且有限的自动对焦性能也难以验证。基于SAR相干处理间隔(CPI)参数统计信号模型,提出了一种特别适用于极低对比度场景的SAR自动对焦方法。进一步分析了CPI长度的限制和自动对焦参数估计的Cramer-Rao下界。最后,利用实测数据对提出的模型和新方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced geostationary radar for hurricane monitoring and studies Effect of system geometry of multi-sensor on accuracy of target position estimation Crossbeam wind measurements with phased array Doppler weather radar: theory Physics-based airborne GMTI radar signal processing Optimal invariant test in coherent radar detection with unknown parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1