Fashion Image Search via Anchor-Free Detector

Shanchuan Gao, Fankai Zeng, Lu Cheng, Jicong Fan, Mingde Zhao
{"title":"Fashion Image Search via Anchor-Free Detector","authors":"Shanchuan Gao, Fankai Zeng, Lu Cheng, Jicong Fan, Mingde Zhao","doi":"10.1145/3512527.3531355","DOIUrl":null,"url":null,"abstract":"Clothes image search is the key technique to effectively search the clothes items that are most relevant to the query clothes given by the customer. In this work, we propose an Anchor-free framework for clothes image search by adopting an additional Re-ID branch for similarity learning and global mask branch for instance segmentation. The Re-ID branch is to extract richer feature of target clothes, where we develop a mask pooling layer to aggregate the feature by utilizing the mask of target clothes as the guidance. In this way, the extracted feature will involve more information covered by the mask area of targets instead of only the center point; the global mask branch is to be trained with detection and Re-ID branches simultaneously, where the estimated mask of target clothes can be utilized in reference procedure to guide the feature extraction. Finally, to further enhance the performance of retrieval, we have introduced a match loss to further fine-tune the Re-ID embedding branch in the framework, so that the clothes target can be closer to the same one, while be farther away from different clothes targets. Extensive simulations have been conducted and the results verify the effectiveness of the proposed work.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clothes image search is the key technique to effectively search the clothes items that are most relevant to the query clothes given by the customer. In this work, we propose an Anchor-free framework for clothes image search by adopting an additional Re-ID branch for similarity learning and global mask branch for instance segmentation. The Re-ID branch is to extract richer feature of target clothes, where we develop a mask pooling layer to aggregate the feature by utilizing the mask of target clothes as the guidance. In this way, the extracted feature will involve more information covered by the mask area of targets instead of only the center point; the global mask branch is to be trained with detection and Re-ID branches simultaneously, where the estimated mask of target clothes can be utilized in reference procedure to guide the feature extraction. Finally, to further enhance the performance of retrieval, we have introduced a match loss to further fine-tune the Re-ID embedding branch in the framework, so that the clothes target can be closer to the same one, while be farther away from different clothes targets. Extensive simulations have been conducted and the results verify the effectiveness of the proposed work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时尚图像搜索通过锚自由检测器
服装图像搜索是有效搜索出与顾客给出的查询服装最相关的服装项的关键技术。在这项工作中,我们提出了一个无锚点的服装图像搜索框架,通过采用额外的Re-ID分支进行相似性学习,并采用全局掩码分支进行实例分割。Re-ID分支是提取目标服装更丰富的特征,其中我们开发了一个面具池层,以目标服装的面具为导向,对特征进行聚合。这样,提取的特征将涉及更多被目标掩模区域所覆盖的信息,而不仅仅是中心点;将全局掩码分支与检测分支和Re-ID分支同时训练,其中目标服装的估计掩码可作为参考程序来指导特征提取。最后,为了进一步提高检索性能,我们引入了匹配损失来进一步微调框架中的Re-ID嵌入分支,使衣服目标更接近同一目标,而远离不同的衣服目标。进行了大量的仿真,结果验证了所提出工作的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1