H. Kunisada, K. Fujitani, F. Ito, M. Okui, Taro Nakamura
{"title":"Deveropmrnt of Anisotropic Short-Fiber Oriented Rubber and its Application To Elongation Actuators","authors":"H. Kunisada, K. Fujitani, F. Ito, M. Okui, Taro Nakamura","doi":"10.1109/IECON49645.2022.9969096","DOIUrl":null,"url":null,"abstract":"In this paper, we describe the development of short-fiber oriented rubber and its application to elongation-type actuators. Short-fiber oriented rubber, i.e., rubber containing oriented short fibers with lengths of 3 mm, has anisotropy in the direction of fiber orientation. In a previous study, it was shown that short fiber-reinforced artificial muscles made of short-fiber oriented rubber can achieve up to 17% shrinkage. However, in that study, characteristics other than the amount of shrinkage were not measured, the basic characteristics of the developed artificial muscle were unclear, and the shrinkage ratio was smaller than that for existing straight-fiber-type artificial muscle. In the present study, we developed a new method for fabricating short-fiber oriented rubber and measured the tensile characteristics in the direction of fiber orientation and vertical to the orientation direction. Moreover, we developed an elongation-type artificial muscle from the rubber sheet and measured its elongation characteristics. Test results indicated that the fabricated rubber sheet had anisotropy. They also indicated that the anisotropy increased with the fiber concentration and that the fiber restraint acted not only in the orientation direction but also in the vertical direction. Furthermore, the developed elongation-type artificial muscle was three times more anisotropic in the ratio of axial changes to diametral changes. On the basis of these results, we expect to develop an automated production method for soft actuators.","PeriodicalId":125740,"journal":{"name":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON49645.2022.9969096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we describe the development of short-fiber oriented rubber and its application to elongation-type actuators. Short-fiber oriented rubber, i.e., rubber containing oriented short fibers with lengths of 3 mm, has anisotropy in the direction of fiber orientation. In a previous study, it was shown that short fiber-reinforced artificial muscles made of short-fiber oriented rubber can achieve up to 17% shrinkage. However, in that study, characteristics other than the amount of shrinkage were not measured, the basic characteristics of the developed artificial muscle were unclear, and the shrinkage ratio was smaller than that for existing straight-fiber-type artificial muscle. In the present study, we developed a new method for fabricating short-fiber oriented rubber and measured the tensile characteristics in the direction of fiber orientation and vertical to the orientation direction. Moreover, we developed an elongation-type artificial muscle from the rubber sheet and measured its elongation characteristics. Test results indicated that the fabricated rubber sheet had anisotropy. They also indicated that the anisotropy increased with the fiber concentration and that the fiber restraint acted not only in the orientation direction but also in the vertical direction. Furthermore, the developed elongation-type artificial muscle was three times more anisotropic in the ratio of axial changes to diametral changes. On the basis of these results, we expect to develop an automated production method for soft actuators.