Knowledge Representation for Legal Document Summarization

S. Takale
{"title":"Knowledge Representation for Legal Document Summarization","authors":"S. Takale","doi":"10.55524/ijircst.2023.11.4.11","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for legal document summarization. Proposed approach is based on Ripple-Down Rules (RDR). It is an incremental knowledge acquisition method. RDR allows us to quickly build an extendable knowledge base using classification rules. The classification rules are written using a set of features. Summary is generated using the identified rhetorical roles in the document. Experiments demonstrate that the RDR based Legal Document summarization approach outperforms the supervised and unsupervised machine learning models.","PeriodicalId":218345,"journal":{"name":"International Journal of Innovative Research in Computer Science and Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55524/ijircst.2023.11.4.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach for legal document summarization. Proposed approach is based on Ripple-Down Rules (RDR). It is an incremental knowledge acquisition method. RDR allows us to quickly build an extendable knowledge base using classification rules. The classification rules are written using a set of features. Summary is generated using the identified rhetorical roles in the document. Experiments demonstrate that the RDR based Legal Document summarization approach outperforms the supervised and unsupervised machine learning models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
法律文件摘要的知识表示
提出了一种新的法律文书摘要方法。该方法基于RDR (Ripple-Down Rules)规则。它是一种增量式的知识获取方法。RDR允许我们使用分类规则快速构建可扩展的知识库。分类规则是使用一组特征编写的。摘要使用文档中确定的修辞角色生成。实验表明,基于RDR的法律文件摘要方法优于有监督和无监督机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comprehensive Review on Machine Learning Applications in Cloud Computing A Comparative Study of ChatGPT, Gemini, and Perplexity Exploring the Synergy of Web Usage Data and Content Mining for Personalized Effectiveness A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation A Comprehensive Review- Building A Secure Social Media Environment for Kids- Automated Content Filtering with Biometric Feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1