DDAM '22: 1st International Workshop on Deepfake Detection for Audio Multimedia

J. Tao, Jiangyan Yi, Cunhang Fan, Ruibo Fu, Shan Liang, Pengyuan Zhang, Haizhou Li, H. Meng, Dong Yu, M. Akagi
{"title":"DDAM '22: 1st International Workshop on Deepfake Detection for Audio Multimedia","authors":"J. Tao, Jiangyan Yi, Cunhang Fan, Ruibo Fu, Shan Liang, Pengyuan Zhang, Haizhou Li, H. Meng, Dong Yu, M. Akagi","doi":"10.1145/3503161.3554779","DOIUrl":null,"url":null,"abstract":"Over the last few years, the technology of speech synthesis and voice conversion has made significant improvement with the development of deep learning. The models can generate realistic and human-like speech. It is difficult for most people to distinguish the generated audio from the real. However, this technology also poses a great threat to the global political economy and social stability if some attackers and criminals misuse it with the intent to cause harm. In this workshop, we aim to bring together researchers from the fields of audio deepfake detection, audio deep synthesis, audio fake game and adversarial attacks to further discuss recent research and future directions for detecting deepfake and manipulated audios in multimedia.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3554779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last few years, the technology of speech synthesis and voice conversion has made significant improvement with the development of deep learning. The models can generate realistic and human-like speech. It is difficult for most people to distinguish the generated audio from the real. However, this technology also poses a great threat to the global political economy and social stability if some attackers and criminals misuse it with the intent to cause harm. In this workshop, we aim to bring together researchers from the fields of audio deepfake detection, audio deep synthesis, audio fake game and adversarial attacks to further discuss recent research and future directions for detecting deepfake and manipulated audios in multimedia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第一届音频多媒体深度伪造检测国际研讨会[j]
在过去的几年里,随着深度学习的发展,语音合成和语音转换技术取得了显著的进步。这些模型可以生成逼真的、类似人类的语音。对于大多数人来说,很难将生成的音频与真实音频区分开来。然而,如果一些攻击者和犯罪分子出于伤害的目的滥用这项技术,也会对全球政治经济和社会稳定构成巨大威胁。在本次研讨会中,我们的目标是汇集来自音频深度伪造检测、音频深度合成、音频伪造游戏和对抗性攻击领域的研究人员,进一步讨论在多媒体中检测深度伪造和操纵音频的最新研究和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1