Research on Robot Accuracy Compensation Method Based on Modified Grey Wolf Algorithm

Tianchen Peng, Tao Zhang, Zejun Sun
{"title":"Research on Robot Accuracy Compensation Method Based on Modified Grey Wolf Algorithm","authors":"Tianchen Peng, Tao Zhang, Zejun Sun","doi":"10.1109/ACIRS58671.2023.10239812","DOIUrl":null,"url":null,"abstract":"This paper proposes a method using the modified grey wolf algorithm for optimizing robot motion accuracy to address problems of insufficient robot trajectory accuracy and low efficiency of traditional optimization algorithms. First, the Denavit-Hartenberg method is used to establish a robotics kinematic error model. Considering the parameters for optimization in the model as variables in the system, the problem of improving the accuracy of the robot is transformed into a problem of optimization for a nonlinear system. An objective function is designed according to the robot's trajectory it will be solved by the MGWO (modified grey wolf) algorithm to obtain the optimal parameters of the robot in order to improve the positioning accuracy of the robot. The experimental results show that this method is effective and can effectively reduce the robot motion error and improve positioning accuracy after algorithm optimization.","PeriodicalId":148401,"journal":{"name":"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIRS58671.2023.10239812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method using the modified grey wolf algorithm for optimizing robot motion accuracy to address problems of insufficient robot trajectory accuracy and low efficiency of traditional optimization algorithms. First, the Denavit-Hartenberg method is used to establish a robotics kinematic error model. Considering the parameters for optimization in the model as variables in the system, the problem of improving the accuracy of the robot is transformed into a problem of optimization for a nonlinear system. An objective function is designed according to the robot's trajectory it will be solved by the MGWO (modified grey wolf) algorithm to obtain the optimal parameters of the robot in order to improve the positioning accuracy of the robot. The experimental results show that this method is effective and can effectively reduce the robot motion error and improve positioning accuracy after algorithm optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进灰狼算法的机器人精度补偿方法研究
针对传统优化算法存在的机器人轨迹精度不足、效率低等问题,提出了一种利用改进灰狼算法优化机器人运动精度的方法。首先,采用Denavit-Hartenberg方法建立机器人运动学误差模型。将模型中用于优化的参数作为系统中的变量,将提高机器人精度的问题转化为非线性系统的优化问题。根据机器人的运动轨迹设计目标函数,利用修正灰狼算法求解目标函数,得到机器人的最优参数,以提高机器人的定位精度。实验结果表明,该方法是有效的,经过算法优化后,可以有效地减小机器人运动误差,提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Threshold-Based Electroencephalography Brain-Computer Interface for Robot Arm Control Hand Gesture Wheelchair Control Based on the Wrist Rotation with Agglomerative Hierarchical Clustering Method Modeling and Simulation Analysis of a Six Wheel Multimodal Mobile Robot Enhancing Biomedical Education with Real-Time Object Identification through Augmented Reality Conference Committees ACIRS 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1