A SVM ensemble learning method using tensor data: An application to cross selling recommendation

Zhen-Yu Chen, Z. Fan, Minghe Sun
{"title":"A SVM ensemble learning method using tensor data: An application to cross selling recommendation","authors":"Zhen-Yu Chen, Z. Fan, Minghe Sun","doi":"10.1109/ICSSSM.2015.7170282","DOIUrl":null,"url":null,"abstract":"In many applications such as dynamic social network and customer behavioral analysis, the data intrinsically have many dimensions and can be naturally represented as high-order tensors. In this study, a SVM ensemble learning method is proposed for classification using tensor data. The method is used in identifying cross selling opportunities to recommend personalized products and services to customers. Two real-world databases are used to evaluate the performance of the method. Computational results show that the SVM ensemble learning method has good performance on these databases.","PeriodicalId":211783,"journal":{"name":"2015 12th International Conference on Service Systems and Service Management (ICSSSM)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Conference on Service Systems and Service Management (ICSSSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2015.7170282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In many applications such as dynamic social network and customer behavioral analysis, the data intrinsically have many dimensions and can be naturally represented as high-order tensors. In this study, a SVM ensemble learning method is proposed for classification using tensor data. The method is used in identifying cross selling opportunities to recommend personalized products and services to customers. Two real-world databases are used to evaluate the performance of the method. Computational results show that the SVM ensemble learning method has good performance on these databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量数据的SVM集成学习方法:在交叉销售推荐中的应用
在动态社会网络和客户行为分析等许多应用程序中,数据本质上具有许多维度,并且可以自然地表示为高阶张量。本文提出了一种基于张量数据的SVM集成学习分类方法。该方法用于识别交叉销售机会,向客户推荐个性化的产品和服务。使用两个真实的数据库来评估该方法的性能。计算结果表明,支持向量机集成学习方法在这些数据库上具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does overconfident effect affect the performance of a duopoly market? A theoretical analysis Effect of Massachusetts healthcare reform on financial performance of healthcare providers: Panel data analysis Influence of government subsidies on carbon reduction technology investment decisions in the supply chain Optimizing process conditions using design of experiments - A wire bonding, semiconductor assembly process case study Research on the development of manufacturing servitization based on a business model analysis framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1