A Solution to Channel Aging in 5G Massive MIMO

Talha Younas, Muluneh Mekonnen, Ghulam Farid, H. Munir, Osama Younas
{"title":"A Solution to Channel Aging in 5G Massive MIMO","authors":"Talha Younas, Muluneh Mekonnen, Ghulam Farid, H. Munir, Osama Younas","doi":"10.1109/ICICT58900.2023.00034","DOIUrl":null,"url":null,"abstract":"In this paper we observe a single-cell massive (multiple-input-multiple-output) MIMO system. Channel aging occurs due to the relative movements between UTs and (base station) BS antenna. To start the analysis, channel state information (CSI) has been acquired by applying minimum-mean-square-error (MMSE). In the next step, (autoregressive moving average) ARMA predictor has been applied to combat the problem caused by aged and deteriorated channel. Then, to check efficiency, we calculate achievable rates for ARMA channel predictor and perform rigorous performance analysis. We observe that ARMA predictor can be a good option to combat the adverse effects of aged channel in large scale MIMO systems. We provide several MATLAB simulations for ARMA predictor by varying number of antennas and several values of Doppler’s shift, which gives us insight that ARMA predictor can be suitable for getting better bandwidth efficiency (BE) in case of aged CSI","PeriodicalId":425057,"journal":{"name":"2023 6th International Conference on Information and Computer Technologies (ICICT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT58900.2023.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we observe a single-cell massive (multiple-input-multiple-output) MIMO system. Channel aging occurs due to the relative movements between UTs and (base station) BS antenna. To start the analysis, channel state information (CSI) has been acquired by applying minimum-mean-square-error (MMSE). In the next step, (autoregressive moving average) ARMA predictor has been applied to combat the problem caused by aged and deteriorated channel. Then, to check efficiency, we calculate achievable rates for ARMA channel predictor and perform rigorous performance analysis. We observe that ARMA predictor can be a good option to combat the adverse effects of aged channel in large scale MIMO systems. We provide several MATLAB simulations for ARMA predictor by varying number of antennas and several values of Doppler’s shift, which gives us insight that ARMA predictor can be suitable for getting better bandwidth efficiency (BE) in case of aged CSI
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G大规模MIMO中信道老化的解决方案
在本文中,我们观察了一个单细胞大规模(多输入-多输出)MIMO系统。信道老化是由于ut和(基站)BS天线之间的相对运动造成的。为了开始分析,通过应用最小均方误差(MMSE)获得通道状态信息(CSI)。下一步,应用(自回归移动平均)ARMA预测器来解决信道老化和劣化带来的问题。然后,为了检查效率,我们计算了ARMA信道预测器的可实现率,并进行了严格的性能分析。我们观察到,在大规模MIMO系统中,ARMA预测器可以作为对抗老化信道不利影响的一个很好的选择。通过对不同天线数量和不同多普勒频移值的ARMA预测器进行MATLAB仿真,表明ARMA预测器可以在老化的CSI中获得更好的带宽效率(be)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lung Cancer Classification and Prediction of Disease Severity Score Using Deep Learning Design Methodology for Single-Channel CNN-Based FER Systems Blockchain-based Certificate Management with Multi-Party Authentication A Content-Based Dataset Recommendation System for Biomedical Datasets Rainfall Forecasting with Variational Autoencoders and LSTMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1