Weakly Supervised Pediatric Bone Age Assessment Using Ultrasonic Images via Automatic Anatomical RoI Detection

Yunyan Yan, Chuanbin Liu, Hongtao Xie, Sicheng Zhang, Zhendong Mao
{"title":"Weakly Supervised Pediatric Bone Age Assessment Using Ultrasonic Images via Automatic Anatomical RoI Detection","authors":"Yunyan Yan, Chuanbin Liu, Hongtao Xie, Sicheng Zhang, Zhendong Mao","doi":"10.1145/3512527.3531436","DOIUrl":null,"url":null,"abstract":"Bone age assessment (BAA) is vital in pediatric clinical diagnosis. Existing deep learning methods predict bone age based on Regions of Interest (RoIs) detection or segmentation of hand radiograph, which requires expensive annotations. Limitations of radiographic technique on imaging and cost hinder their clinical application as well. Compared to X-ray images, ultrasonic images are rather clean, cheap and flexible, but the deep learning research on ultrasonic BAA is still a white space. For this purpose, we propose a weakly supervised interpretable framework entitled USB-Net, utilizing ultrasonic pelvis images and only image-level age annotations. USB-Net consists of automatic anatomical RoI detection stage and age assessment stage. In the detection stage, USB-Net locates the discriminative anatomical RoIs of pelvis through attention heatmap without any extra RoI supervision. In the assessment stage, the cropped anatomical RoI patch is fed as fine-grained input to estimate age. In addition, we provide the first ultrasonic BAA dataset composed of 1644 ultrasonic hip joint images with image-level labels of age and gender. The experimental results verify that our model keeps consistent attention with human knowledge and achieves 16.24 days mean absolute error (MAE) on USBAA dataset.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bone age assessment (BAA) is vital in pediatric clinical diagnosis. Existing deep learning methods predict bone age based on Regions of Interest (RoIs) detection or segmentation of hand radiograph, which requires expensive annotations. Limitations of radiographic technique on imaging and cost hinder their clinical application as well. Compared to X-ray images, ultrasonic images are rather clean, cheap and flexible, but the deep learning research on ultrasonic BAA is still a white space. For this purpose, we propose a weakly supervised interpretable framework entitled USB-Net, utilizing ultrasonic pelvis images and only image-level age annotations. USB-Net consists of automatic anatomical RoI detection stage and age assessment stage. In the detection stage, USB-Net locates the discriminative anatomical RoIs of pelvis through attention heatmap without any extra RoI supervision. In the assessment stage, the cropped anatomical RoI patch is fed as fine-grained input to estimate age. In addition, we provide the first ultrasonic BAA dataset composed of 1644 ultrasonic hip joint images with image-level labels of age and gender. The experimental results verify that our model keeps consistent attention with human knowledge and achieves 16.24 days mean absolute error (MAE) on USBAA dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自动解剖RoI检测的超声图像弱监督儿童骨龄评估
骨龄评估(BAA)在儿科临床诊断中至关重要。现有的深度学习方法基于感兴趣区域(roi)检测或手部x光片分割来预测骨龄,这需要昂贵的注释。放射技术在成像和成本上的局限性也阻碍了其临床应用。与x射线图像相比,超声图像干净、廉价、灵活,但超声BAA的深度学习研究仍然是一个空白。为此,我们提出了一个弱监督的可解释框架,称为USB-Net,利用超声骨盆图像和仅图像级年龄注释。USB-Net由自动解剖RoI检测阶段和年龄评估阶段组成。在检测阶段,USB-Net通过注意热图定位骨盆的鉴别解剖RoI,无需额外的RoI监督。在评估阶段,将裁剪的解剖感兴趣区域作为细粒度输入进行年龄估计。此外,我们提供了第一个超声BAA数据集,该数据集由1644张超声髋关节图像组成,具有图像级的年龄和性别标签。实验结果表明,该模型与人类知识保持一致,在USBAA数据集上达到16.24天的平均绝对误差(MAE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1