Reinforcement Learning for IoT Interoperability

Sebastian Kotstein, C. Decker
{"title":"Reinforcement Learning for IoT Interoperability","authors":"Sebastian Kotstein, C. Decker","doi":"10.1109/ICSA-C.2019.00010","DOIUrl":null,"url":null,"abstract":"In this paper, an approach is introduced how reinforcement learning can be used to achieve interoperability between heterogeneous Internet of Things (IoT) components. More specifically, we model an HTTP REST service as a Markov Decision Process and adapt Q-Learning to the properties of REST so that an agent in the role of an HTTP REST client can learn the semantics of the service and, especially an optimal sequence of service calls to achieve an application specific goal. With our approach, we want to open up and facilitate a discussion in the community, as we see the key for achieving interoperability in IoT by the utilization of artificial intelligence techniques.","PeriodicalId":239999,"journal":{"name":"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA-C.2019.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, an approach is introduced how reinforcement learning can be used to achieve interoperability between heterogeneous Internet of Things (IoT) components. More specifically, we model an HTTP REST service as a Markov Decision Process and adapt Q-Learning to the properties of REST so that an agent in the role of an HTTP REST client can learn the semantics of the service and, especially an optimal sequence of service calls to achieve an application specific goal. With our approach, we want to open up and facilitate a discussion in the community, as we see the key for achieving interoperability in IoT by the utilization of artificial intelligence techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IoT互操作性的强化学习
本文介绍了如何使用强化学习实现异构物联网(IoT)组件之间的互操作性。更具体地说,我们将HTTP REST服务建模为马尔可夫决策过程(Markov Decision Process),并使Q-Learning适应REST的属性,以便扮演HTTP REST客户端的代理可以学习服务的语义,特别是实现应用程序特定目标的最佳服务调用序列。通过我们的方法,我们希望在社区中开放和促进讨论,因为我们看到了利用人工智能技术实现物联网互操作性的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Retargetable Fault Injection Framework for Safety Validation of Autonomous Vehicles Experience Report: Combining Mixed-Criticality Support with Resource Reservation and Spare Capacity Allocation DecidArch V2: An Improved Game to Teach Architecture Design Decision Making Towards Consistency Checking Between Software Architecture and Informal Documentation Machine Learning System Architectural Pattern for Improving Operational Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1