{"title":"Discriminative regularized metric learning for person re-identification","authors":"Venice Erin Liong, Yongxin Ge, Jiwen Lu","doi":"10.1109/ICB.2015.7139075","DOIUrl":null,"url":null,"abstract":"Person re-identification aims to match people across non-overlapping cameras, and recent advances have shown that metric learning is an effective technique for person re-identification. However, most existing metric learning methods suffer from the small sample size (SSS) problem due to the limited amount of labeled training samples. In this paper, we propose a new discriminative regularized metric learning (DRML) method for person re-identification. Specifically, we exploit discriminative information of training samples to regulate the eigenvalues of the intra-class and inter-class covariance matrices so that the distance metric estimated is less biased. Experimental results on three widely used datasets validate the effectiveness of our proposed method for person re-identification.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Person re-identification aims to match people across non-overlapping cameras, and recent advances have shown that metric learning is an effective technique for person re-identification. However, most existing metric learning methods suffer from the small sample size (SSS) problem due to the limited amount of labeled training samples. In this paper, we propose a new discriminative regularized metric learning (DRML) method for person re-identification. Specifically, we exploit discriminative information of training samples to regulate the eigenvalues of the intra-class and inter-class covariance matrices so that the distance metric estimated is less biased. Experimental results on three widely used datasets validate the effectiveness of our proposed method for person re-identification.