Performance analysis of Kalman filter, fuzzy Kalman filter and wind driven optimized Kalman filter for tracking applications

Shaik Khashirunnisa, B. K. Chand, B. Kumari
{"title":"Performance analysis of Kalman filter, fuzzy Kalman filter and wind driven optimized Kalman filter for tracking applications","authors":"Shaik Khashirunnisa, B. K. Chand, B. Kumari","doi":"10.1109/CCINTELS.2016.7878223","DOIUrl":null,"url":null,"abstract":"State space estimation approaches are one of the finest approaches to predict the future behavior of real time systems like tracking, navigation, guidance systems etc. Kalman filter is employed for the estimation of system dynamics. It is very important to tune the parameters observation noise (measurement noise) and plant noise (process noise) for better estimation of dynamics of the system especially in tracking applications. Tuning of measurement noise and plant noise can be done through Nature Inspired Optimization techniques. Fuzzy logic is another approach to tune these parameters. In this paper the authors tried to estimate target motion parameters using Kalman filter and the performance is analyzed using the tuning methods Wind Driven Optimization (WDO) and fuzzy logic.","PeriodicalId":158982,"journal":{"name":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCINTELS.2016.7878223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

State space estimation approaches are one of the finest approaches to predict the future behavior of real time systems like tracking, navigation, guidance systems etc. Kalman filter is employed for the estimation of system dynamics. It is very important to tune the parameters observation noise (measurement noise) and plant noise (process noise) for better estimation of dynamics of the system especially in tracking applications. Tuning of measurement noise and plant noise can be done through Nature Inspired Optimization techniques. Fuzzy logic is another approach to tune these parameters. In this paper the authors tried to estimate target motion parameters using Kalman filter and the performance is analyzed using the tuning methods Wind Driven Optimization (WDO) and fuzzy logic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡尔曼滤波器、模糊卡尔曼滤波器和风力驱动优化卡尔曼滤波器的跟踪性能分析
状态空间估计方法是预测跟踪、导航、制导等实时系统未来行为的最佳方法之一。采用卡尔曼滤波对系统动力学进行估计。对观测噪声(测量噪声)和装置噪声(过程噪声)进行参数调整对于更好地估计系统的动态特性非常重要,特别是在跟踪应用中。测量噪声和植物噪声的调谐可以通过自然启发优化技术来完成。模糊逻辑是调整这些参数的另一种方法。本文尝试用卡尔曼滤波对目标运动参数进行估计,并利用风力优化和模糊逻辑的调谐方法对其性能进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
60 Gbps transmission with reduced power and lower frequency in lightwave systems using negative dispersion optical fiber Design, fabrication and evaluation of low density, broadband microwave absorbing composite for X & Ku band Biometric personal identification system using biomedical sensors Automatic age detection based on facial images A 40 nm CMOS V-band VCO with on-chip body bias voltage control technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1