Detection and Classification of Bleeding Region in WCE Images using Color Feature

S. Suman, F. Hussin, A. Malik, Konstantin Pogorelov, M. Riegler, Shiaw-Hooi Ho, I. Hilmi, K. Goh
{"title":"Detection and Classification of Bleeding Region in WCE Images using Color Feature","authors":"S. Suman, F. Hussin, A. Malik, Konstantin Pogorelov, M. Riegler, Shiaw-Hooi Ho, I. Hilmi, K. Goh","doi":"10.1145/3095713.3095731","DOIUrl":null,"url":null,"abstract":"Wireless capsule endoscopy (WCE) is a modern and efficient technology to diagnose complete gastrointestinal tract (GIT) for various abnormalities. Due to long recording time of WCE, it acquires a huge amount of images, which is very tedious for clinical expertise to inspect each and every frame of a complete video footage. In this paper, an automated color feature based technique of bleeding detection is proposed. In case of bleeding, color is a very important feature for an efficient information extraction. Our algorithm is based on statistical color feature analysis and we use support vector machine (SVM) to classify WCE video frames into bleeding and non-bleeding classes with a high processing speed. An experimental evaluation shows that our method has promising bleeding detection performance with sensitivity and specificity higher than existing approaches.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Wireless capsule endoscopy (WCE) is a modern and efficient technology to diagnose complete gastrointestinal tract (GIT) for various abnormalities. Due to long recording time of WCE, it acquires a huge amount of images, which is very tedious for clinical expertise to inspect each and every frame of a complete video footage. In this paper, an automated color feature based technique of bleeding detection is proposed. In case of bleeding, color is a very important feature for an efficient information extraction. Our algorithm is based on statistical color feature analysis and we use support vector machine (SVM) to classify WCE video frames into bleeding and non-bleeding classes with a high processing speed. An experimental evaluation shows that our method has promising bleeding detection performance with sensitivity and specificity higher than existing approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于颜色特征的WCE图像出血区域检测与分类
无线胶囊内窥镜(WCE)是一种诊断全胃肠道(GIT)各种异常的现代高效技术。由于WCE的录制时间长,获取的图像量非常大,对于临床专业人员来说,要检查一段完整的视频片段的每一帧都是非常繁琐的。本文提出了一种基于颜色特征的自动出血检测方法。在出血的情况下,颜色是有效提取信息的一个非常重要的特征。该算法基于统计色彩特征分析,采用支持向量机(SVM)将WCE视频帧分为出血类和非出血类,处理速度快。实验结果表明,该方法具有较高的敏感性和特异性,具有较好的出血检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tag Propagation Approaches within Speaking Face Graphs for Multimodal Person Discovery A free Web API for single and multi-document summarization Visualizing weakly-Annotated Multi-label Mayan Inscriptions with Supervised t-SNE Prediction of User Demographics from Music Listening Habits Detecting adversarial example attacks to deep neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1