T. Johnsten, Aishwarya Prakash, G. Daly, Ryan G. Benton, Tristan Clark
{"title":"Computational framework for generating synthetic signal peptides","authors":"T. Johnsten, Aishwarya Prakash, G. Daly, Ryan G. Benton, Tristan Clark","doi":"10.1145/3535508.3545530","DOIUrl":null,"url":null,"abstract":"We have developed a computational framework for constructing synthetic signal peptides from a base set of protein sequences. A large number of structured \"building blocks\", represented as m-step ordered pairs of amino acids, are extracted from the base sequences. Using a straightforward procedure, the building blocks enable the construction of a diverse set of synthetic signal peptides and targeting sequences that have the potential for industrial and therapeutic purposes. We have validated the proposed framework using several state-of-the-art sequence prediction platforms such as Signal-BLAST, SignalP-5.0, MULocDeep, and DeepMito. Experimental results show the computational framework can successfully generate synthetic signal peptides and targeting sequences and transform non-signaling sequences into synthetic signal peptides.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a computational framework for constructing synthetic signal peptides from a base set of protein sequences. A large number of structured "building blocks", represented as m-step ordered pairs of amino acids, are extracted from the base sequences. Using a straightforward procedure, the building blocks enable the construction of a diverse set of synthetic signal peptides and targeting sequences that have the potential for industrial and therapeutic purposes. We have validated the proposed framework using several state-of-the-art sequence prediction platforms such as Signal-BLAST, SignalP-5.0, MULocDeep, and DeepMito. Experimental results show the computational framework can successfully generate synthetic signal peptides and targeting sequences and transform non-signaling sequences into synthetic signal peptides.