Computational framework for generating synthetic signal peptides

T. Johnsten, Aishwarya Prakash, G. Daly, Ryan G. Benton, Tristan Clark
{"title":"Computational framework for generating synthetic signal peptides","authors":"T. Johnsten, Aishwarya Prakash, G. Daly, Ryan G. Benton, Tristan Clark","doi":"10.1145/3535508.3545530","DOIUrl":null,"url":null,"abstract":"We have developed a computational framework for constructing synthetic signal peptides from a base set of protein sequences. A large number of structured \"building blocks\", represented as m-step ordered pairs of amino acids, are extracted from the base sequences. Using a straightforward procedure, the building blocks enable the construction of a diverse set of synthetic signal peptides and targeting sequences that have the potential for industrial and therapeutic purposes. We have validated the proposed framework using several state-of-the-art sequence prediction platforms such as Signal-BLAST, SignalP-5.0, MULocDeep, and DeepMito. Experimental results show the computational framework can successfully generate synthetic signal peptides and targeting sequences and transform non-signaling sequences into synthetic signal peptides.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a computational framework for constructing synthetic signal peptides from a base set of protein sequences. A large number of structured "building blocks", represented as m-step ordered pairs of amino acids, are extracted from the base sequences. Using a straightforward procedure, the building blocks enable the construction of a diverse set of synthetic signal peptides and targeting sequences that have the potential for industrial and therapeutic purposes. We have validated the proposed framework using several state-of-the-art sequence prediction platforms such as Signal-BLAST, SignalP-5.0, MULocDeep, and DeepMito. Experimental results show the computational framework can successfully generate synthetic signal peptides and targeting sequences and transform non-signaling sequences into synthetic signal peptides.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成信号肽的计算框架
我们已经开发了一个计算框架,用于从蛋白质序列的基础集构建合成信号肽。从碱基序列中提取了大量结构化的“构建块”,表示为m步有序氨基酸对。使用简单的程序,构建模块可以构建多种合成信号肽和靶向序列,具有工业和治疗目的的潜力。我们使用几个最先进的序列预测平台(如Signal-BLAST、SignalP-5.0、MULocDeep和DeepMito)验证了所提出的框架。实验结果表明,该计算框架能够成功生成合成信号肽和靶向序列,并将非信号序列转化为合成信号肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining post-pandemic behaviors influencing human mobility trends Geographic ensembles of observations using randomised ensembles of autoregression chains: ensemble methods for spatio-temporal time series forecasting of influenza-like illness Trajectory-based and sound-based medical data clustering Session details: Graphs & networks TopographyNET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1