Power Quality in Smart Distribution Systems with Electric Battery, Large Loads and PV Generation.

M. Ortiz, Idar Petersen, R. Mikut, Henrik Landsverk, S. Simonsen
{"title":"Power Quality in Smart Distribution Systems with Electric Battery, Large Loads and PV Generation.","authors":"M. Ortiz, Idar Petersen, R. Mikut, Henrik Landsverk, S. Simonsen","doi":"10.2991/ires-19.2019.13","DOIUrl":null,"url":null,"abstract":"A change in the electricity consumption is taking place, where one of the main reasons is the large increase in Distributed Generation, as photovoltaic (PV) systems and electric batteries in the low voltage (LV) distribution grid. This could translate in specific cases into a situation of increased peak load and bigger voltage fluctuation. Therefore, an effective control of the grid voltage is necessary to achieve a stable energy supply from renewable sources. What services can a battery provide? The authors present an analysis of voltage control and other battery services in a LV grid. A flexible model based on Python is developed and used to solve a multi-period optimal power flow problem. They propose an optimised distributed voltage regulation. The power flow equations are linearised around a stable operation point, which allows high feasibility and computation speed. Then a receding horizon framework is described, including 24h and 1h updated forecasts. The analysis is performed on a LV network with large loads of a stadium, large PV generation (690kWp) and with a 1MWh battery. The new method provides an optimization of the grid operation (reduced voltage variation and cost of energy imported from the grid) under different seasonal weeks.","PeriodicalId":424726,"journal":{"name":"Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ires-19.2019.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A change in the electricity consumption is taking place, where one of the main reasons is the large increase in Distributed Generation, as photovoltaic (PV) systems and electric batteries in the low voltage (LV) distribution grid. This could translate in specific cases into a situation of increased peak load and bigger voltage fluctuation. Therefore, an effective control of the grid voltage is necessary to achieve a stable energy supply from renewable sources. What services can a battery provide? The authors present an analysis of voltage control and other battery services in a LV grid. A flexible model based on Python is developed and used to solve a multi-period optimal power flow problem. They propose an optimised distributed voltage regulation. The power flow equations are linearised around a stable operation point, which allows high feasibility and computation speed. Then a receding horizon framework is described, including 24h and 1h updated forecasts. The analysis is performed on a LV network with large loads of a stadium, large PV generation (690kWp) and with a 1MWh battery. The new method provides an optimization of the grid operation (reduced voltage variation and cost of energy imported from the grid) under different seasonal weeks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电池、大负荷和光伏发电智能配电系统的电能质量。
电力消费正在发生变化,其中一个主要原因是分布式发电的大量增加,如光伏(PV)系统和低压(LV)配电网中的电池。在特定情况下,这可能会导致峰值负载增加和电压波动更大。因此,有效控制电网电压是实现可再生能源稳定供电的必要条件。电池能提供什么服务?作者对低压电网中的电压控制和其他电池服务进行了分析。基于Python开发了一个灵活的模型,并将其用于求解多周期最优潮流问题。他们提出了一种优化的分布式电压调节。功率流方程在稳定运行点附近线性化,具有较高的可行性和计算速度。然后描述了一个后退地平线框架,包括24h和1h更新的预测。该分析是在一个低压网络上进行的,该网络具有体育场的大负载,大型光伏发电(690kWp)和1MWh电池。该方法在不同的季节周提供了电网运行的优化(减少电压变化和从电网进口的能源成本)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat pump and thermal storage sizing with time-of-use electricity pricing Temperature distribution in a new composite material for hydrogen storage – Design study of different cooling concepts Techno-economic Evaluation Of A Modular Compressed Air Energy Storage To Support Integration Of Wind Generation On El Hierro Capacity Estimation of a Utility-Scale Lithium Ion Battery in an Autarchic Environment by Comparing two Different Battery Models Decentralized city district hydrogen storage system based on the electrochemical reduction of carbon dioxide to formate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1