Accelerating Encrypted Watermarking using Wavelet Transform and CKKS Homomorphic Encryption

A. Basuki, Iwan Setiawan, D. Rosiyadi, Taufik Iqbal Ramdhani, Heru Susanto
{"title":"Accelerating Encrypted Watermarking using Wavelet Transform and CKKS Homomorphic Encryption","authors":"A. Basuki, Iwan Setiawan, D. Rosiyadi, Taufik Iqbal Ramdhani, Heru Susanto","doi":"10.1145/3575882.3575942","DOIUrl":null,"url":null,"abstract":"Encrypted watermarking enables secret watermark embedding on a public platform such as blockchain for better transparency. It offers data and computation traceability to ensure a proveable watermark embedding and validation. Nevertheless, encrypted watermarking has a setback regarding high computation cost and long computation time that hinder its implementation on most blockchain platforms. In this paper, we propose a joint use of discrete wavelet transform (DWT) and CKKS (Cheon-Kim-Kim-Song) homomorphic encryption to speed up and improve the efficiency of encrypted watermarking. The DWT reduces the size of encrypted data to 2L where L refers to the DWT level. Meanwhile, the CKKS encryption speed up the encrypted computation using approximate arithmetic computation and predefined precision. The result shows that CKKS and DWT level 2 is the most optimal solution delivering up to ≈ 27.24 × faster computation and ≈ 5.48 × lesser memory compared to the existing method (BFV-encryption and DCT). In addition, the proposed method has a similar watermarking quality and watermark extractability to non-encrypted watermarking.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Encrypted watermarking enables secret watermark embedding on a public platform such as blockchain for better transparency. It offers data and computation traceability to ensure a proveable watermark embedding and validation. Nevertheless, encrypted watermarking has a setback regarding high computation cost and long computation time that hinder its implementation on most blockchain platforms. In this paper, we propose a joint use of discrete wavelet transform (DWT) and CKKS (Cheon-Kim-Kim-Song) homomorphic encryption to speed up and improve the efficiency of encrypted watermarking. The DWT reduces the size of encrypted data to 2L where L refers to the DWT level. Meanwhile, the CKKS encryption speed up the encrypted computation using approximate arithmetic computation and predefined precision. The result shows that CKKS and DWT level 2 is the most optimal solution delivering up to ≈ 27.24 × faster computation and ≈ 5.48 × lesser memory compared to the existing method (BFV-encryption and DCT). In addition, the proposed method has a similar watermarking quality and watermark extractability to non-encrypted watermarking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波变换和CKKS同态加密的加速加密水印
加密水印可以在区块链等公共平台上嵌入秘密水印,以提高透明度。它提供数据和计算可追溯性,以确保可验证的水印嵌入和验证。然而,加密水印在高计算成本和长计算时间方面存在挫折,阻碍了其在大多数区块链平台上的实现。本文提出了一种联合使用离散小波变换(DWT)和CKKS (Cheon-Kim-Kim-Song)同态加密来加速和提高加密水印的效率。DWT将加密数据的大小减少到2L,其中L指的是DWT级别。同时,CKKS加密利用近似算术计算和预定义精度加快了加密计算速度。结果表明,与现有的方法(bfv加密和DCT)相比,CKKS和DWT级别2是最优的解决方案,计算速度提高了≈27.24倍,内存减少了≈5.48倍。此外,该方法具有与非加密水印相似的水印质量和水印可提取性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1