Network Security Evaluation Using Deep Neural Network

Loreen Mahmoud, R. Praveen
{"title":"Network Security Evaluation Using Deep Neural Network","authors":"Loreen Mahmoud, R. Praveen","doi":"10.23919/ICITST51030.2020.9351326","DOIUrl":null,"url":null,"abstract":"One of the most significant systems in computer network security assurance is the assessment of computer network security. With the goal of finding an effective method for performing the process of security evaluation in a computer network, this paper uses a deep neural network to be responsible for the task of security evaluating. The DNN will be built with python on Spyder IDE, it will be trained and tested by 17 network security indicators then the output that we get represents one of the security levels that have been already defined. The maj or purpose is to enhance the ability to determine the security level of a computer network accurately based on its selected security indicators. The method that we intend to use in this paper in order to evaluate network security is simple, reduces the human factors interferences, and can obtain the correct results of the evaluation rapidly. We will analyze the results to decide if this method will enhance the process of evaluating the security of the network in terms of accuracy.","PeriodicalId":346678,"journal":{"name":"2020 15th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST51030.2020.9351326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

One of the most significant systems in computer network security assurance is the assessment of computer network security. With the goal of finding an effective method for performing the process of security evaluation in a computer network, this paper uses a deep neural network to be responsible for the task of security evaluating. The DNN will be built with python on Spyder IDE, it will be trained and tested by 17 network security indicators then the output that we get represents one of the security levels that have been already defined. The maj or purpose is to enhance the ability to determine the security level of a computer network accurately based on its selected security indicators. The method that we intend to use in this paper in order to evaluate network security is simple, reduces the human factors interferences, and can obtain the correct results of the evaluation rapidly. We will analyze the results to decide if this method will enhance the process of evaluating the security of the network in terms of accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的网络安全评估
计算机网络安全评估是计算机网络安全保障中最重要的系统之一。为了寻找在计算机网络中进行安全评估过程的有效方法,本文使用深度神经网络来负责安全评估任务。DNN将在Spyder IDE上用python构建,它将通过17个网络安全指标进行训练和测试,然后我们得到的输出代表了已经定义的安全级别之一。其主要目的是增强根据所选安全指标准确判断计算机网络安全等级的能力。本文拟采用的网络安全评估方法简单,减少了人为因素的干扰,能够快速得到正确的评估结果。我们将对结果进行分析,以确定该方法是否会在准确性方面提高评估网络安全性的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Shoulder-Surfing Resistant Colour Image-based Authentication Method Using Human Vision Perception with Spatial Frequency YARAMON: A Memory-based Detection Framework for Ransomware Families Session 2: Information Security Measuring Psychosocial and Behavioural Factors Improves Attack Potential Estimates Session 6: Information Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1