{"title":"RealTimeAir","authors":"S. Hart, Joseph Doyle","doi":"10.1145/3538393.3544933","DOIUrl":null,"url":null,"abstract":"Poor air quality has been responsible for millions of premature deaths. Acknowledging the critical role air quality plays in the future of their populations, governments across the world have been installing networks of fixed location air quality measurement instruments. But these monitoring stations are expensive and therefore spatially sparse, typically publishing summaries of hourly averages of pollutant measurements once per day. Data so sparse spatially and temporally offers little to inform the street user or policy maker as to what is happening at a more granular level, thus reducing the ability to avoid pollutants. This paper investigates the feasibility of using consumer grade mobile sensors as a means to contribute to a real time federated hyper-local crowd sensing air quality data service, RealTimeAir (RTA), underpinned by government reference sensors. We compare two mobile sensors and examine the correlation of the measurements between them. We investigate the correlation between these sensors and the more expensive fixed monitoring stations. We consider the variation of measurements over time and space to investigate the need for greater granularity of these measurements. Finally, we present a low pollutant exposure route finder as a use case for the proposed system.","PeriodicalId":438536,"journal":{"name":"Proceedings of the ACM SIGCOMM Workshop on Networked Sensing Systems for a Sustainable Society","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM Workshop on Networked Sensing Systems for a Sustainable Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3538393.3544933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Poor air quality has been responsible for millions of premature deaths. Acknowledging the critical role air quality plays in the future of their populations, governments across the world have been installing networks of fixed location air quality measurement instruments. But these monitoring stations are expensive and therefore spatially sparse, typically publishing summaries of hourly averages of pollutant measurements once per day. Data so sparse spatially and temporally offers little to inform the street user or policy maker as to what is happening at a more granular level, thus reducing the ability to avoid pollutants. This paper investigates the feasibility of using consumer grade mobile sensors as a means to contribute to a real time federated hyper-local crowd sensing air quality data service, RealTimeAir (RTA), underpinned by government reference sensors. We compare two mobile sensors and examine the correlation of the measurements between them. We investigate the correlation between these sensors and the more expensive fixed monitoring stations. We consider the variation of measurements over time and space to investigate the need for greater granularity of these measurements. Finally, we present a low pollutant exposure route finder as a use case for the proposed system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Saving energy on smartphones through edge computing: an experimental evaluation A preliminary analysis of data collection and retrieval scheme for green information-centric wireless sensor networks On the prediction of air quality within vehicles using outdoor air pollution: sensors and machine learning algorithms RealTimeAir Kaala
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1