Predicting Diabetes in Healthy Population through Machine Learning

H. Abbas, L. Alic, M. Rios, M. Abdul-Ghani, K. Qaraqe
{"title":"Predicting Diabetes in Healthy Population through Machine Learning","authors":"H. Abbas, L. Alic, M. Rios, M. Abdul-Ghani, K. Qaraqe","doi":"10.1109/CBMS.2019.00117","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the data of the San Antonio Heart Study, and employ machine learning to predict the future development of type-2 diabetes. To build the prediction model, we use the support vector machines and ten features that are wellknown in the literature as strong predictors of future diabetes. Due to the unbalanced nature of the dataset in terms of the class labels, we use 10-fold cross-validation to train the model and a hold-out set to validate it. The results of this study show a validation accuracy of 84.1% with a recall rate of 81.1% averaged over 100 iterations. The outcomes of this study can help in identifying the population that is at high risk of developing type-2 diabetes in the future.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper, we revisit the data of the San Antonio Heart Study, and employ machine learning to predict the future development of type-2 diabetes. To build the prediction model, we use the support vector machines and ten features that are wellknown in the literature as strong predictors of future diabetes. Due to the unbalanced nature of the dataset in terms of the class labels, we use 10-fold cross-validation to train the model and a hold-out set to validate it. The results of this study show a validation accuracy of 84.1% with a recall rate of 81.1% averaged over 100 iterations. The outcomes of this study can help in identifying the population that is at high risk of developing type-2 diabetes in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习预测健康人群的糖尿病
在本文中,我们回顾了圣安东尼奥心脏研究的数据,并利用机器学习来预测2型糖尿病的未来发展。为了建立预测模型,我们使用了文献中众所周知的支持向量机和十个特征作为未来糖尿病的强预测因子。由于数据集在类标签方面的不平衡性质,我们使用10倍交叉验证来训练模型,并使用一个保留集来验证它。研究结果表明,100次迭代的平均召回率为81.1%,验证准确率为84.1%。这项研究的结果可以帮助确定未来患2型糖尿病的高风险人群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1