Influence of the Discretizing Method on the Identified Results in Boundary Value Inverse Analysis by the Boundary Element Method

S. Kawamura, K. Takao, H. Minamoto, Z. Hossain
{"title":"Influence of the Discretizing Method on the Identified Results in Boundary Value Inverse Analysis by the Boundary Element Method","authors":"S. Kawamura, K. Takao, H. Minamoto, Z. Hossain","doi":"10.1299/JCST.2.1","DOIUrl":null,"url":null,"abstract":"In this study, the influence of the discretizing method, such as a constant element or a linear element, on the accuracy of the identified results is investigated in the boundary value inverse analysis by the Boundary Element Method. For the regularization of the inverse analysis, the combination method is used; the one that the fundamental solution in B.E.M. is selected adequately and the one that the rank of the coefficient matrix is reduced. The optimum condition for solving the inverse problem is found by two performance indexes which are the condition number of the coefficient matrix and the residual norm caused by the rank reduction of the matrix. In a numerical example, the inverse problem governed by two-dimensional Laplace equation is treated. As a result, the identified result obtained using the linear element has almost the same accuracy as the one using the constant element while the accuracy using the constant element is often better, and the selection method of an adequate fundamental solution is very effective for the inverse analysis. Thus, the inverse analysis may be carried out using the constant element and the adequate fundamental solution selected.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the influence of the discretizing method, such as a constant element or a linear element, on the accuracy of the identified results is investigated in the boundary value inverse analysis by the Boundary Element Method. For the regularization of the inverse analysis, the combination method is used; the one that the fundamental solution in B.E.M. is selected adequately and the one that the rank of the coefficient matrix is reduced. The optimum condition for solving the inverse problem is found by two performance indexes which are the condition number of the coefficient matrix and the residual norm caused by the rank reduction of the matrix. In a numerical example, the inverse problem governed by two-dimensional Laplace equation is treated. As a result, the identified result obtained using the linear element has almost the same accuracy as the one using the constant element while the accuracy using the constant element is often better, and the selection method of an adequate fundamental solution is very effective for the inverse analysis. Thus, the inverse analysis may be carried out using the constant element and the adequate fundamental solution selected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边界元法边值反分析中离散化方法对辨识结果的影响
本文研究了用边界元法进行边界值反演分析时,离散化方法(常数元或线性元)对识别结果精度的影响。对于逆分析的正则化,采用组合法;一种是充分选取B.E.M.中的基本解,另一种是降低系数矩阵的秩。通过系数矩阵的条件数和矩阵降阶后的残差模两个性能指标,找到了求解逆问题的最优条件。在一个数值例子中,处理了由二维拉普拉斯方程控制的反问题。结果表明,采用线性单元得到的辨识结果与采用常数单元得到的辨识结果精度几乎相同,而采用常数单元得到的辨识结果往往精度更高,选取合适的基本解的方法对于逆分析是非常有效的。因此,可以使用常数元和选择适当的基本解进行逆分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Optimization of a Gas Burner for TPV Application Experimental and Numerical Approaches for Reliability Evaluation of Electronic Packaging Two-Layer Viscous Shallow-Water Equations and Conservation Laws Lattice Boltzmann Simulation of Two-Phase Viscoelastic Fluid Flows An Inexact Balancing Preconditioner for Large-Scale Structural Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1