Multi-Criteria Decision-Making Techniques for Histopathological Image Classification

T. Revathi, S. Saroja, S. Haseena, M. B. B. Pepsi
{"title":"Multi-Criteria Decision-Making Techniques for Histopathological Image Classification","authors":"T. Revathi, S. Saroja, S. Haseena, M. B. B. Pepsi","doi":"10.4018/978-1-5225-6316-7.CH005","DOIUrl":null,"url":null,"abstract":"This chapter presents an overview of methods that have been proposed for analysis of histopathological images. Diagnosing and detecting abnormalities in medical images helps the pathologist in making better decisions. Different machine learning algorithms such as k-nearest neighbor, random forest, support vector machine, ensemble learning, multilayer perceptron, and convolutional neural network are incorporated for carrying out the analysis process. Further, multi-criteria decision-making (MCDM) methods such as SAW, WPM, and TOPSIS are used to improve the efficiency of the decision-making process.","PeriodicalId":104783,"journal":{"name":"Histopathological Image Analysis in Medical Decision Making","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histopathological Image Analysis in Medical Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-6316-7.CH005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This chapter presents an overview of methods that have been proposed for analysis of histopathological images. Diagnosing and detecting abnormalities in medical images helps the pathologist in making better decisions. Different machine learning algorithms such as k-nearest neighbor, random forest, support vector machine, ensemble learning, multilayer perceptron, and convolutional neural network are incorporated for carrying out the analysis process. Further, multi-criteria decision-making (MCDM) methods such as SAW, WPM, and TOPSIS are used to improve the efficiency of the decision-making process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组织病理图像分类的多准则决策技术
本章概述了已提出的组织病理学图像分析方法。诊断和检测医学图像中的异常有助于病理学家做出更好的决定。不同的机器学习算法,如k近邻、随机森林、支持向量机、集成学习、多层感知器和卷积神经网络被纳入进行分析过程。进一步,采用SAW、WPM、TOPSIS等多准则决策方法提高决策效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medical Image Lossy Compression With LSTM Networks Microscopic Image Processing for the Analysis of Nosema Disease HE Stain Image Segmentation Using an Innovative Type-2 Fuzzy Set-Based Approach A Study on Segmentation of Leukocyte Image With Shannon's Entropy Multi-Criteria Decision-Making Techniques for Histopathological Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1