Combined forecasting model of urban water consumption based on adaptive filtering and BP neural network

F. Ban, Dan Wu, Yueming Hei
{"title":"Combined forecasting model of urban water consumption based on adaptive filtering and BP neural network","authors":"F. Ban, Dan Wu, Yueming Hei","doi":"10.1504/IJSHC.2018.10016417","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of improving the precision of urban short-term water consumption forecasting, the idea of combination forecasting is put forward. According to the water use data of a city, the time series prediction method and the explanatory prediction method are used to forecast the water use in the short-term. In order to combine the advantages of the two forecasting methods, this paper proposes a combination forecasting method based on weight coefficient optimisation theory. Compared with the single prediction model, the combined forecasting model has higher accuracy and stability.","PeriodicalId":114223,"journal":{"name":"Int. J. Soc. Humanist. Comput.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Soc. Humanist. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSHC.2018.10016417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In order to solve the problem of improving the precision of urban short-term water consumption forecasting, the idea of combination forecasting is put forward. According to the water use data of a city, the time series prediction method and the explanatory prediction method are used to forecast the water use in the short-term. In order to combine the advantages of the two forecasting methods, this paper proposes a combination forecasting method based on weight coefficient optimisation theory. Compared with the single prediction model, the combined forecasting model has higher accuracy and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应滤波和BP神经网络的城市用水量联合预测模型
为了解决提高城市短期用水量预测精度的问题,提出了组合预测的思路。根据某市用水量数据,采用时间序列预测法和解释预测法对短期用水量进行预测。为了结合两种预测方法的优点,本文提出了一种基于权系数优化理论的组合预测方法。与单一预测模型相比,组合预测模型具有更高的精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for ethical artificial intelligence - from social theories to cybernetics-based implementation The application of fuzzy set concept to assess service quality in tourist hotel settings Cloud computing adoption status in Oman (Arab) higher education: unified theory of acceptance and use of technology in education management Online secure store management system by face recognition authentication From personal to professional: impacts of trust in information systems and analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1