A Large-Scale UAV Audio Dataset and Audio-Based UAV Classification Using CNN

Yaqin Wang, Zhiwei Chu, Ilmun Ku, E. C. Smith, E. Matson
{"title":"A Large-Scale UAV Audio Dataset and Audio-Based UAV Classification Using CNN","authors":"Yaqin Wang, Zhiwei Chu, Ilmun Ku, E. C. Smith, E. Matson","doi":"10.1109/IRC55401.2022.00039","DOIUrl":null,"url":null,"abstract":"The increased popularity and accessibility of UAVs may create potential threats. Researchers have been developing UAV detection and classification systems with different methods, including audio-based approach. However, the number of publicly available UAV audio datasets is limited. To fill this gap, we selected 10 different UAVs, ranging from toy hand drones to Class I drones, and recorded a total of 5215 seconds length of audio data generated from the flying UAVs. To the best of our knowledge, the proposed dataset is the largest audio dataset for UAVs so far. We further implemented a convolutional neural network (CNN) model for 10-class UAV classification and trained the model with the collected data. The overall test accuracy of the trained model is 97.7% and the test loss is 0.085.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The increased popularity and accessibility of UAVs may create potential threats. Researchers have been developing UAV detection and classification systems with different methods, including audio-based approach. However, the number of publicly available UAV audio datasets is limited. To fill this gap, we selected 10 different UAVs, ranging from toy hand drones to Class I drones, and recorded a total of 5215 seconds length of audio data generated from the flying UAVs. To the best of our knowledge, the proposed dataset is the largest audio dataset for UAVs so far. We further implemented a convolutional neural network (CNN) model for 10-class UAV classification and trained the model with the collected data. The overall test accuracy of the trained model is 97.7% and the test loss is 0.085.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模无人机音频数据集及基于CNN的无人机音频分类
无人机的日益普及和可及性可能会产生潜在威胁。研究人员一直在用不同的方法开发无人机检测和分类系统,包括基于音频的方法。然而,公开可用的UAV音频数据集的数量是有限的。为了填补这一空白,我们选择了10种不同的无人机,从玩具手无人机到一级无人机,并记录了飞行无人机产生的总计5215秒的音频数据。据我们所知,该数据集是迄今为止最大的无人机音频数据集。我们进一步实现了用于10类无人机分类的卷积神经网络(CNN)模型,并使用收集到的数据对模型进行训练。训练模型的整体测试准确率为97.7%,测试损失为0.085。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Approach to 6D Object Pose Tracking in Fast Motion Scenarios Mechanical Exploration of the Design of Tactile Fingertips via Finite Element Analysis Generating Robot-Dependent Cost Maps for Off-Road Environments Using Locomotion Experiments and Earth Observation Data* Tracking Visual Landmarks of Opportunity as Rally Points for Unmanned Ground Vehicles Experimental Assessment of Feature-based Lidar Odometry and Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1