{"title":"Design of a Two-Element Antenna Array Using Substrate Integrated Waveguide Technique","authors":"K. Sellal, L. Talbi","doi":"10.1155/2011/278070","DOIUrl":null,"url":null,"abstract":"The design of a two-element antenna array using the substrate integrated waveguide (SIW) technique and operating at 10 GHz is presented. The proposed antenna array consists of two SIW phase shifter sections with two SIW slot antennas. The phase shifting is achieved by changing the position of two inductive posts inserted inside each element of the array. Numerical simulations and experimental measurements have been carried out for three differential phases between the two antenna array elements, namely, 0°, 22.5°, and 67.5°. A prototype for each differential phase has been fabricated and measured. Results have shown a fairly good agreement between theory and experiments. In fact, a reflection coefficient of better than 20 dB has been achieved around 10 GHZ. The E-plane radiation pattern has shown a beam scan between 5° and 18° and demonstrated the feasibility of designing an SIW antenna phased array.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/278070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The design of a two-element antenna array using the substrate integrated waveguide (SIW) technique and operating at 10 GHz is presented. The proposed antenna array consists of two SIW phase shifter sections with two SIW slot antennas. The phase shifting is achieved by changing the position of two inductive posts inserted inside each element of the array. Numerical simulations and experimental measurements have been carried out for three differential phases between the two antenna array elements, namely, 0°, 22.5°, and 67.5°. A prototype for each differential phase has been fabricated and measured. Results have shown a fairly good agreement between theory and experiments. In fact, a reflection coefficient of better than 20 dB has been achieved around 10 GHZ. The E-plane radiation pattern has shown a beam scan between 5° and 18° and demonstrated the feasibility of designing an SIW antenna phased array.