A High Performance Computing Platform for Big Biological Data Analysis

Chang-Wei Yeh, Chieh-Wei Huang, C. Yang, Yu-Tai Wang
{"title":"A High Performance Computing Platform for Big Biological Data Analysis","authors":"Chang-Wei Yeh, Chieh-Wei Huang, C. Yang, Yu-Tai Wang","doi":"10.1109/ICASI57738.2023.10179527","DOIUrl":null,"url":null,"abstract":"With the rapid progress of high-throughput sequencing projects, biological data is growing exponentially, creating a need for efficient and scalable algorithms and high-performance computing (HPC) platforms for big biological data analysis. However, traditional HPC platforms are inadequate for meeting the demand for rapid data analysis tasks in bioinformatics research. Analyzing biological sequence data is challenging due to its complexity and long computing time. This poses challenges for researchers to gain a deep understanding of biological functions. Thus, this research presents a large-scale biological data analysis platform enabled by an HPC infrastructure for genomic sequencing data and protein structure analysis. This study lists the characteristics of big biological data and traditional computing platforms, provides a reconfigurable HPC platform for biological data analysis applications. A practical case of HPC platforms for big biological data analytics in Taiwan is also presented. By using a reconfigurable HPC platform, the computational bottleneck can be removed, and data analysis can be accelerated. The platform enables researchers to gain profound insights into the deepest biological functions by addressing the challenges of big biological data analysis.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid progress of high-throughput sequencing projects, biological data is growing exponentially, creating a need for efficient and scalable algorithms and high-performance computing (HPC) platforms for big biological data analysis. However, traditional HPC platforms are inadequate for meeting the demand for rapid data analysis tasks in bioinformatics research. Analyzing biological sequence data is challenging due to its complexity and long computing time. This poses challenges for researchers to gain a deep understanding of biological functions. Thus, this research presents a large-scale biological data analysis platform enabled by an HPC infrastructure for genomic sequencing data and protein structure analysis. This study lists the characteristics of big biological data and traditional computing platforms, provides a reconfigurable HPC platform for biological data analysis applications. A practical case of HPC platforms for big biological data analytics in Taiwan is also presented. By using a reconfigurable HPC platform, the computational bottleneck can be removed, and data analysis can be accelerated. The platform enables researchers to gain profound insights into the deepest biological functions by addressing the challenges of big biological data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物大数据分析的高性能计算平台
随着高通量测序项目的快速发展,生物数据呈指数级增长,需要高效、可扩展的算法和高性能计算(HPC)平台来进行大生物数据分析。然而,传统的高性能计算平台已不能满足生物信息学研究中对快速数据分析任务的需求。生物序列数据分析由于其复杂性和较长的计算时间而具有挑战性。这对研究人员深入了解生物功能提出了挑战。因此,本研究提出了一个基于HPC基础设施的大规模生物数据分析平台,用于基因组测序数据和蛋白质结构分析。本研究列举了生物大数据与传统计算平台的特点,为生物数据分析应用提供了一个可重构的高性能计算平台。本文还介绍了台湾HPC平台应用于生物大数据分析的实际案例。通过使用可重构的高性能计算平台,可以消除计算瓶颈,加快数据分析速度。该平台通过解决大生物数据分析的挑战,使研究人员能够深入了解最深层的生物功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Detection of Disinformation Based on Chronological and Spatial Topologies Cluster based Indexing for Spatial Analysis on Read-only Database Straight-line Generation Approach using Deep Learning for Mobile Robot Guidance in Lettuce Fields Leveraging the Objective Intelligibility and Noise Estimation to Improve Conformer-Based MetricGAN Analysis of Eye-tracking System Based on Diffractive Waveguide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1