Explainable Anomaly Detection for District Heating Based on Shapley Additive Explanations

Sungwoo Park, Jihoon Moon, Eenjun Hwang
{"title":"Explainable Anomaly Detection for District Heating Based on Shapley Additive Explanations","authors":"Sungwoo Park, Jihoon Moon, Eenjun Hwang","doi":"10.1109/ICDMW51313.2020.00111","DOIUrl":null,"url":null,"abstract":"One key component in the heat-using facility of district heating systems is the differential pressure control valve. This valve ensures a stable flow of water to the heat exchanger and the temperature control valve. It also makes a stable pressure difference between the supply and return lines. Hence, its malfunctioning could cause significant heat losses and, consequently, economic losses. To avoid this, it is necessary to monitor the abnormal operation of the valve in real-time. Despite various machine learning-based anomaly detection models, their decision is limited in practical use unless the rationale for the decision is appropriately explained. In this paper, we propose a Shapley additive explanation-based explainable anomaly detection scheme that can present the degree of contribution of input variables to the derived result. We report some of the experimental results.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

One key component in the heat-using facility of district heating systems is the differential pressure control valve. This valve ensures a stable flow of water to the heat exchanger and the temperature control valve. It also makes a stable pressure difference between the supply and return lines. Hence, its malfunctioning could cause significant heat losses and, consequently, economic losses. To avoid this, it is necessary to monitor the abnormal operation of the valve in real-time. Despite various machine learning-based anomaly detection models, their decision is limited in practical use unless the rationale for the decision is appropriately explained. In this paper, we propose a Shapley additive explanation-based explainable anomaly detection scheme that can present the degree of contribution of input variables to the derived result. We report some of the experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Shapley加性解释的区域供热可解释异常检测
差压控制阀是区域供热系统热利用装置的关键部件之一。这种阀门确保水流稳定地流向热交换器和温度控制阀。它还使供应和回油管之间的压力差稳定。因此,它的故障可能会造成严重的热损失,从而造成经济损失。为了避免这种情况,有必要实时监测阀门的异常运行情况。尽管有各种基于机器学习的异常检测模型,但除非决策的基本原理得到适当解释,否则它们的决策在实际使用中受到限制。在本文中,我们提出了一种基于Shapley加性解释的可解释异常检测方案,该方案可以显示输入变量对导出结果的贡献程度。我们报告一些实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1