Evaluation of Relevance-Driven Compression of Regular Cataract Surgery Videos

Natalia Mathá, Klaus Schoeffmann, S. Sarny, Doris Putzgruber-Adamitsch, Y. El-Shabrawi
{"title":"Evaluation of Relevance-Driven Compression of Regular Cataract Surgery Videos","authors":"Natalia Mathá, Klaus Schoeffmann, S. Sarny, Doris Putzgruber-Adamitsch, Y. El-Shabrawi","doi":"10.1109/CBMS55023.2022.00083","DOIUrl":null,"url":null,"abstract":"In recent years, the utilization intensity and thus the demand for storing cataract surgery videos for different purposes has increased. Hospitals continuously improve their technical recording equipment, i.e., cameras, to enhance the post-operative processing efficiency of the recordings. However, afterward, the videos are stored on hospitals' internal data servers in their original size, which leads to a massive storage consumption. In this paper, we propose a relevance-based compression scheme. First, we perform a user study with clinicians to define the relevance rates of regular cataract surgery phases. Then, we compress different phases based on the determined relevance rates, using different encoding parameters and two coding standards, namely H.264/AVC and AV1. Afterward, the medical experts evaluate the visual quality of the encoded videos. Our results show a storage-saving potential for H.264/AVC of up to 95.94% and up to 98.82% for AV1, excluding idle phases (no tools are visible).","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, the utilization intensity and thus the demand for storing cataract surgery videos for different purposes has increased. Hospitals continuously improve their technical recording equipment, i.e., cameras, to enhance the post-operative processing efficiency of the recordings. However, afterward, the videos are stored on hospitals' internal data servers in their original size, which leads to a massive storage consumption. In this paper, we propose a relevance-based compression scheme. First, we perform a user study with clinicians to define the relevance rates of regular cataract surgery phases. Then, we compress different phases based on the determined relevance rates, using different encoding parameters and two coding standards, namely H.264/AVC and AV1. Afterward, the medical experts evaluate the visual quality of the encoded videos. Our results show a storage-saving potential for H.264/AVC of up to 95.94% and up to 98.82% for AV1, excluding idle phases (no tools are visible).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
常规白内障手术视频的相关性驱动压缩评价
近年来,白内障手术视频的使用强度和存储不同用途的需求不断增加。医院不断改进技术记录设备,如摄像机,以提高记录的术后处理效率。但是,之后,这些视频以原始大小存储在医院内部的数据服务器上,这导致了大量的存储消耗。在本文中,我们提出了一种基于相关性的压缩方案。首先,我们与临床医生进行了一项用户研究,以确定常规白内障手术阶段的相关性。然后,根据确定的相关率,使用不同的编码参数和H.264/AVC和AV1两种编码标准对不同的相位进行压缩。之后,医学专家评估编码视频的视觉质量。我们的研究结果表明,H.264/AVC的存储节省潜力高达95.94%,AV1的存储节省潜力高达98.82%,不包括空闲阶段(没有工具可见)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1