Using neural networks in agent teams to speedup solution discovery for hard multi-criteria problems

Shaun Gittens, R. Goodwin, J. Kalagnanam, S. Murthy
{"title":"Using neural networks in agent teams to speedup solution discovery for hard multi-criteria problems","authors":"Shaun Gittens, R. Goodwin, J. Kalagnanam, S. Murthy","doi":"10.1109/IJCNN.1999.836211","DOIUrl":null,"url":null,"abstract":"Evolutionary population-based search methods are often used to find a Pareto-optimal set of solutions for hard multicriteria optimization problems. We utilize one such agent architecture to evolve good solution sets to these problems, deploying agents to progressively add, modify and delete candidate solutions in one or more populations over time. Here we describe how we assign neural nets to aid agent decision-making and encourage cooperation to improve convergence to good Pareto optimal solution sets. This paper describes the design and results of this approach and suggests paths for further study.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.836211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evolutionary population-based search methods are often used to find a Pareto-optimal set of solutions for hard multicriteria optimization problems. We utilize one such agent architecture to evolve good solution sets to these problems, deploying agents to progressively add, modify and delete candidate solutions in one or more populations over time. Here we describe how we assign neural nets to aid agent decision-making and encourage cooperation to improve convergence to good Pareto optimal solution sets. This paper describes the design and results of this approach and suggests paths for further study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在智能体团队中使用神经网络来加速难多准则问题的解发现
基于进化种群的搜索方法通常用于寻找硬多准则优化问题的帕累托最优解集。我们利用一种这样的代理体系结构来演化出针对这些问题的良好解决方案集,部署代理来随着时间的推移逐步在一个或多个种群中添加、修改和删除候选解决方案。在这里,我们描述了我们如何分配神经网络来帮助代理决策,并鼓励合作,以提高收敛到好的帕累托最优解集。本文描述了该方法的设计和结果,并提出了进一步研究的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1